Reconstructing the evolution of deceleration parameter with the non-parametric Bayesian method

被引:0
|
作者
Bing Xu
Li-Xin Xia
机构
[1] Anhui Science and Technology University,School of Electrical and Electronic Engineering
[2] Hunan Normal University,Department of Physics and Synergistic Innovation Center for Quantum Effects and Applications
[3] Kashgar University,Department of Physics
来源
关键词
Cosmology; Cosmic acceleration; Deceleration parameter;
D O I
暂无
中图分类号
学科分类号
摘要
In order to answer the question of whether the current acceleration of the cosmic expansion is slowing down or not, in this paper we use a non-parametric Bayesian method to reconstruct the evolution of the deceleration parameter q(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(z)$\end{document} from the latest observations including the type Ia supernova data, the baryon acoustic oscillation data, the Planck cosmic microwave background data, the Hubble data as well as the local value of Hubble constant. We find that all the data support a currently increasing cosmic acceleration, a spatially flat universe is favored and the effects of the spatial curvature on the reconstructed result are negligible. Moreover, the evolution of q(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(z)$\end{document} displays an oscillatory behavior, which is preferred by observations at the 3.2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$3.2\sigma $\end{document} confidence level as compared with that in the Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda $\end{document}CDM. But, the reconstructed q(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q(z)$\end{document} is punished by the Bayesian information criteria due to more many model parameters.
引用
收藏
相关论文
共 50 条
  • [21] Non-parametric Bayesian super-resolution
    Lane, R. O.
    [J]. IET RADAR SONAR AND NAVIGATION, 2010, 4 (04): : 639 - 648
  • [22] A non-parametric Bayesian model for bounded data
    Thanh Minh Nguyen
    Wu, Q. M. Jonathan
    [J]. PATTERN RECOGNITION, 2015, 48 (06) : 2084 - 2095
  • [23] Efficient Non-parametric Bayesian Hawkes Processes
    Zhang, Rui
    Walder, Christian
    Rizoiu, Marian-Andrei
    Xie, Lexing
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 4299 - 4305
  • [24] A Bayesian non-parametric stochastic frontier model
    Assaf, A. George
    Tsionas, Mike
    Kock, Florian
    Josiassen, Alexander
    [J]. ANNALS OF TOURISM RESEARCH, 2021, 87
  • [25] Spatial non-parametric Bayesian clustered coefficients
    Areed, Wala Draidi
    Price, Aiden
    Thompson, Helen
    Malseed, Reid
    Mengersen, Kerrie
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] Non-parametric Bayesian inference on bivariate extremes
    Guillotte, Simon
    Perron, Francois
    Segers, Johan
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 377 - 406
  • [27] Non-parametric reconstruction of the cosmological jerk parameter
    Purba Mukherjee
    Narayan Banerjee
    [J]. The European Physical Journal C, 2021, 81
  • [28] Non-parametric reconstruction of the cosmological jerk parameter
    Mukherjee, Purba
    Banerjee, Narayan
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (01):
  • [29] Bayesian non-parametric method for decision support: Forecasting online product sales
    Wu, Ziyue
    Chen, Xi
    Gao, Zhaoxing
    [J]. DECISION SUPPORT SYSTEMS, 2023, 174
  • [30] Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
    Tatiana Tatarinova
    Michael Neely
    Jay Bartroff
    Michael van Guilder
    Walter Yamada
    David Bayard
    Roger Jelliffe
    Robert Leary
    Alyona Chubatiuk
    Alan Schumitzky
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2013, 40 : 189 - 199