Invariant Metrics on the Complex Ellipsoid

被引:0
|
作者
Gunhee Cho
机构
[1] University of Connecticut,Department of Mathematics
来源
关键词
Invariant metrics; Complex ellipsoid; Bergman metric; Kahler–Einstein metric; Kobayashi–Royden metric; Caratheodory–Reiffen metric; Geometric convex domain; Wu–Yau theorem; 32T27;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a class of geometric convex domains on which the Carathéodory–Reiffen metric, the Bergman metric, the complete Kähler–Einstein metric of negative scalar curvature are uniformly equivalent, but not proportional to each other. In a two-dimensional case, we provide a full description of curvature tensors of the Bergman metric on the weakly pseudoconvex boundary point and show that invariant metrics are proportional to each other if and only if the geometric convex domain is the Euclidean ball.
引用
收藏
页码:2088 / 2104
页数:16
相关论文
共 50 条
  • [31] Characterization of Holomorphic Invariant Strongly Pseudoconvex Complex Finsler Metrics on Unit Polydisks
    Shuqing Lin
    Chunping Zhong
    The Journal of Geometric Analysis, 2023, 33
  • [32] Geometry of holomorphic invariant strongly pseudoconvex complex Finsler metrics on the classical domains
    Xiaoshu Ge
    Chunping Zhong
    Science China(Mathematics), 2024, 67 (08) : 1827 - 1864
  • [33] Invariant Tensors under the Twin Interchange of Norden Metrics on Almost Complex Manifolds
    Mancho Manev
    Results in Mathematics, 2016, 70 : 109 - 126
  • [34] Characterization of Holomorphic Invariant Strongly Pseudoconvex Complex Finsler Metrics on Unit Polydisks
    Lin, Shuqing
    Zhong, Chunping
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (11)
  • [35] Invariant Tensors under the Twin Interchange of Norden Metrics on Almost Complex Manifolds
    Manev, Mancho
    RESULTS IN MATHEMATICS, 2016, 70 (1-2) : 109 - 126
  • [36] The Nonexistence of an Invariant Measure for an Inhomogeneous Ellipsoid Rolling on a Plane
    A. V. Borisov
    I. S. Mamaev
    Mathematical Notes, 2005, 77 : 855 - 857
  • [37] Homogeneous Control Design Using Invariant Ellipsoid Method
    Wang, Siyuan
    Duan, Haibin
    Zheng, Gang
    Ping, Xubin
    Boutat, Driss
    Polyakov, Andrey
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (09) : 6458 - 6465
  • [38] Invariant (α, β)-metrics on homogeneous manifolds
    An, Huihui
    Deng, Shaoqiang
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (02): : 89 - 102
  • [39] Invariant metrics on finite groups
    Podesta, Ricardo A.
    Vides, Maximiliano G.
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [40] Invariant (α, β)-metrics on homogeneous manifolds
    Huihui An
    Shaoqiang Deng
    Monatshefte für Mathematik, 2008, 154