Invariant Metrics on the Complex Ellipsoid

被引:0
|
作者
Gunhee Cho
机构
[1] University of Connecticut,Department of Mathematics
来源
关键词
Invariant metrics; Complex ellipsoid; Bergman metric; Kahler–Einstein metric; Kobayashi–Royden metric; Caratheodory–Reiffen metric; Geometric convex domain; Wu–Yau theorem; 32T27;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a class of geometric convex domains on which the Carathéodory–Reiffen metric, the Bergman metric, the complete Kähler–Einstein metric of negative scalar curvature are uniformly equivalent, but not proportional to each other. In a two-dimensional case, we provide a full description of curvature tensors of the Bergman metric on the weakly pseudoconvex boundary point and show that invariant metrics are proportional to each other if and only if the geometric convex domain is the Euclidean ball.
引用
收藏
页码:2088 / 2104
页数:16
相关论文
共 50 条
  • [11] Classification of Left Invariant Riemannian Metrics on Complex Hyperbolic Space
    Dekic, Andrijana
    Babic, Marijana
    Vukmirovic, Srdjan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (05)
  • [12] Classification of Left Invariant Riemannian Metrics on Complex Hyperbolic Space
    Andrijana Dekić
    Marijana Babić
    Srdjan Vukmirović
    Mediterranean Journal of Mathematics, 2022, 19
  • [13] On U(n)-invariant strongly convex complex Finsler metrics
    Wang, Kun
    Xia, Hongchuan
    Zhong, Chunping
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (11) : 2461 - 2478
  • [14] On U(n)-invariant strongly convex complex Finsler metrics
    Kun Wang
    Hongchuan Xia
    Chunping Zhong
    Science China Mathematics, 2021, 64 : 2461 - 2478
  • [15] Deformation of extremal metrics, complex manifolds and the relative Futaki invariant
    Rollin, Yann
    Simanca, Santiago R.
    Tipler, Carl
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (1-2) : 547 - 568
  • [16] INVARIANT EINSTEIN METRICS ON SU(n) AND COMPLEX STIEFEL MANIFOLDS
    Arvanitoyeorgos, Andreas
    Sakane, Yusuke
    Statha, Marina
    TOHOKU MATHEMATICAL JOURNAL, 2020, 72 (02) : 161 - 210
  • [17] AN INVARIANT FOR REPEATED REFLECTIONS IN AN EXPANDING ELLIPSOID
    KLEIN, G
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 396 (1810): : 217 - 226
  • [18] Invariant finsler metrics on homogeneous manifolds: II. Complex structures
    Deng, SQ
    Hou, ZX
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (11): : 2599 - 2609
  • [19] Characterization of Holomorphic Invariant Complex Finsler Metrics and Schwarz Lemma on the Polyball
    Lin, Shuqing
    Wang, Ruiwen
    Zhong, Chunping
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
  • [20] Localization of invariant metrics
    N. Nikolov
    Archiv der Mathematik, 2002, 79 : 67 - 73