Invariant Metrics on the Complex Ellipsoid

被引:0
|
作者
Gunhee Cho
机构
[1] University of Connecticut,Department of Mathematics
来源
关键词
Invariant metrics; Complex ellipsoid; Bergman metric; Kahler–Einstein metric; Kobayashi–Royden metric; Caratheodory–Reiffen metric; Geometric convex domain; Wu–Yau theorem; 32T27;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a class of geometric convex domains on which the Carathéodory–Reiffen metric, the Bergman metric, the complete Kähler–Einstein metric of negative scalar curvature are uniformly equivalent, but not proportional to each other. In a two-dimensional case, we provide a full description of curvature tensors of the Bergman metric on the weakly pseudoconvex boundary point and show that invariant metrics are proportional to each other if and only if the geometric convex domain is the Euclidean ball.
引用
收藏
页码:2088 / 2104
页数:16
相关论文
共 50 条
  • [21] On Invariant Matsumoto Metrics
    Parhizkar, Mojtaba
    Latifi, Dariush
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (02) : 355 - 365
  • [22] On Invariant Matsumoto Metrics
    Mojtaba Parhizkar
    Dariush Latifi
    Vietnam Journal of Mathematics, 2019, 47 : 355 - 365
  • [23] COMPARISON OF INVARIANT METRICS
    Kang, Hyunsuk
    Lee, Lina
    Zeager, Crystal
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (01) : 157 - 177
  • [24] Localization of invariant metrics
    Nikolov, N
    ARCHIV DER MATHEMATIK, 2002, 79 (01) : 67 - 73
  • [25] On Invariant Ellipsoid for Linear Systems by Saturated Controls
    Zhou Bin
    Duan Guangren
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 71 - 75
  • [26] INVARIANT METRICS AND INVARIANT FUNCTIONS ON THE REINHARDT DOMAINS
    殷慰萍
    Science Bulletin, 1989, (06) : 441 - 443
  • [27] INVARIANT METRICS AND INVARIANT FUNCTIONS ON THE REINHARDT DOMAINS
    YIN, WP
    CHINESE SCIENCE BULLETIN, 1989, 34 (06): : 441 - 443
  • [28] Invariant classification of metrics using invariant formalism
    Machado Ramos, M. P.
    Edgar, S. B.
    Bradley, M.
    SPANISH RELATIVITY MEETING (ERE 2009), 2010, 229
  • [29] A classification of unitary invariant weakly complex Berwald metrics of constant holomorphic curvature
    Xia, Hongchuan
    Zhong, Chunping
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 43 : 1 - 20
  • [30] Geometry of holomorphic invariant strongly pseudoconvex complex Finsler metrics on the classical domains
    Ge, Xiaoshu
    Zhong, Chunping
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (08) : 1827 - 1864