Homogeneous Control Design Using Invariant Ellipsoid Method

被引:0
|
作者
Wang, Siyuan [1 ]
Duan, Haibin [2 ]
Zheng, Gang [3 ]
Ping, Xubin [4 ]
Boutat, Driss [5 ]
Polyakov, Andrey
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ BUAA, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] INRIA Lille, F-59000 Lille, France
[4] Xidian Univ, Xidian 710071, Peoples R China
[5] INSA Ctr Val de Loire, F-18000 Bourges, France
基金
中国国家自然科学基金;
关键词
Ellipsoids; Symmetric matrices; Perturbation methods; Control design; Vectors; Uncertainty; Tuning; Homogeneity; invariant set; linear matrix inequality (LMI); BOUNDED EXOGENOUS DISTURBANCES; H-INFINITY-CONTROL; ROBUST STABILIZATION; LINEAR-SYSTEMS; MIMO SYSTEMS; FEEDBACK; TRANSFORMATIONS; STABILIZABILITY; STABILITY;
D O I
10.1109/TAC.2024.3384844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The invariant ellipsoid method is aimed at minimization of the smallest invariant and attractive set of a control system operating under bounded external disturbances and parametric uncertainties. This article extends this technique to a class of the so-called generalized homogeneous system. The generalized homogeneous optimal (in the sense of invariant ellipsoid) controller allows further improvement of the control system providing a faster convergence and smaller overshoots. Theoretical results are supported by numerical simulations and experiments.
引用
收藏
页码:6458 / 6465
页数:8
相关论文
共 50 条
  • [1] On the Geometric Aspects of the Invariant Ellipsoid Method: Application to the Robust Control Design
    Azhmyakov, Vadim
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 1353 - 1358
  • [2] Dynamic sliding mode control design using attracting ellipsoid method
    Davila, Jorge
    Poznyak, Alexander
    AUTOMATICA, 2011, 47 (07) : 1467 - 1472
  • [3] On the Robust Control Design for a Class of Nonlinear Affine Control Systems: the Invariant Ellipsoid Approach
    Gonzalez, Omar
    Poznyak, Alex
    Azhmyakov, Vadim
    2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATION CONTROL (CCE 2009), 2009, : 6 - 11
  • [4] Advances in attractive ellipsoid method for robust control design
    Azhmyakov, V.
    Mera, M.
    Juarez, R.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (05) : 1418 - 1436
  • [5] Autonomous Ship Deck Landing of a Quadrotor Using Invariant Ellipsoid Method
    Tan, Chun Kiat
    Wang, Jianliang
    Paw, Yew Chai
    Liao, Fang
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (02) : 891 - 903
  • [6] Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control
    Polyakov, Andrey
    Poznyak, Alex
    AUTOMATICA, 2011, 47 (07) : 1450 - 1454
  • [7] Non-existence of an invariant measure for a homogeneous ellipsoid rolling on the plane
    Garcia-Naranjo, Luis C.
    Marrero, Juan C.
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (04): : 372 - 379
  • [8] Non-existence of an invariant measure for a homogeneous ellipsoid rolling on the plane
    Luis C. García-Naranjo
    Juan C. Marrero
    Regular and Chaotic Dynamics, 2013, 18 : 372 - 379
  • [9] Minimization of the Unmatched Disturbances in the Sliding Mode Control Systems via Invariant Ellipsoid Method
    Polyakov, Andrey
    Poznyak, Alex
    2009 IEEE CONTROL APPLICATIONS CCA & INTELLIGENT CONTROL (ISIC), VOLS 1-3, 2009, : 1122 - +
  • [10] Tracking Problem for Linear Control Systems: The Invariant Ellipsoid Approach
    Khlebnikov, Mikhail V.
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 862 - 866