Homogeneous Control Design Using Invariant Ellipsoid Method

被引:0
|
作者
Wang, Siyuan [1 ]
Duan, Haibin [2 ]
Zheng, Gang [3 ]
Ping, Xubin [4 ]
Boutat, Driss [5 ]
Polyakov, Andrey
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ BUAA, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] INRIA Lille, F-59000 Lille, France
[4] Xidian Univ, Xidian 710071, Peoples R China
[5] INSA Ctr Val de Loire, F-18000 Bourges, France
基金
中国国家自然科学基金;
关键词
Ellipsoids; Symmetric matrices; Perturbation methods; Control design; Vectors; Uncertainty; Tuning; Homogeneity; invariant set; linear matrix inequality (LMI); BOUNDED EXOGENOUS DISTURBANCES; H-INFINITY-CONTROL; ROBUST STABILIZATION; LINEAR-SYSTEMS; MIMO SYSTEMS; FEEDBACK; TRANSFORMATIONS; STABILIZABILITY; STABILITY;
D O I
10.1109/TAC.2024.3384844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The invariant ellipsoid method is aimed at minimization of the smallest invariant and attractive set of a control system operating under bounded external disturbances and parametric uncertainties. This article extends this technique to a class of the so-called generalized homogeneous system. The generalized homogeneous optimal (in the sense of invariant ellipsoid) controller allows further improvement of the control system providing a faster convergence and smaller overshoots. Theoretical results are supported by numerical simulations and experiments.
引用
收藏
页码:6458 / 6465
页数:8
相关论文
共 50 条
  • [21] Application of an Intelligent Control on Economics Dynamic System: The Attractive Invariant Ellipsoid Approach
    Juarez-del-Toro, R.
    Castrejon-Lozano, J. G.
    Gomez-Rosales, C. A.
    Lopez-Chavarria, S.
    MATHEMATICS IN COMPUTER SCIENCE, 2019, 13 (03) : 391 - 401
  • [22] Application of an Intelligent Control on Economics Dynamic System: The Attractive Invariant Ellipsoid Approach
    R. Juarez-del-Toro
    J. G. Castrejón-Lozano
    C. A. Gomez-Rosales
    S. López-Chavarría
    Mathematics in Computer Science, 2019, 13 : 391 - 401
  • [23] A Novel PID Controller Gain Tuning Method for a Quadrotor Landing on a Ship Deck using the Invariant Ellipsoid Technique
    Tan, Chun Kiat
    Wang, Lianliang
    2014 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2014), 2014, : 1339 - 1344
  • [24] An offline predictive control with ellipsoid invariant set for time-variant system
    Rego, Rosana
    Costa, Marcus
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2021, 37 (02) : 121 - 127
  • [25] Output Linear Feedback for a Class of Nonlinear Systems based on the Invariant Ellipsoid Method
    Gonzalez-Garcia, S.
    Polyakov, A.
    Poznyak, A.
    2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2008), 2008, : 375 - 380
  • [26] AN INVARIANT FOR REPEATED REFLECTIONS IN AN EXPANDING ELLIPSOID
    KLEIN, G
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 396 (1810): : 217 - 226
  • [27] Optimum reliability design of multiaxially laminated composites using the interior tangent ellipsoid method
    Miki, Mitsunori
    Sugiyama, Yoshihiko
    Sakamoto, Shinsuke
    Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59 (564): : 1993 - 1999
  • [28] Sliding mode control design using canonical homogeneous norm
    Polyakov, Andrey
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2019, 29 (03) : 682 - 701
  • [29] An Enhanced Ellipsoid Method for Electromagnetic Devices Optimization and Design
    Gomes Vieira, D. A.
    Lisboa, A. C.
    Saldanha, R. R.
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 2843 - 2851
  • [30] A general method to construct invariant PDEs on homogeneous manifolds
    Alekseevsky, Dmitri, V
    Gutt, Jan
    Manno, Gianni
    Moreno, Giovanni
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (03)