Homogeneous Control Design Using Invariant Ellipsoid Method

被引:0
|
作者
Wang, Siyuan [1 ]
Duan, Haibin [2 ]
Zheng, Gang [3 ]
Ping, Xubin [4 ]
Boutat, Driss [5 ]
Polyakov, Andrey
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ BUAA, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] INRIA Lille, F-59000 Lille, France
[4] Xidian Univ, Xidian 710071, Peoples R China
[5] INSA Ctr Val de Loire, F-18000 Bourges, France
基金
中国国家自然科学基金;
关键词
Ellipsoids; Symmetric matrices; Perturbation methods; Control design; Vectors; Uncertainty; Tuning; Homogeneity; invariant set; linear matrix inequality (LMI); BOUNDED EXOGENOUS DISTURBANCES; H-INFINITY-CONTROL; ROBUST STABILIZATION; LINEAR-SYSTEMS; MIMO SYSTEMS; FEEDBACK; TRANSFORMATIONS; STABILIZABILITY; STABILITY;
D O I
10.1109/TAC.2024.3384844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The invariant ellipsoid method is aimed at minimization of the smallest invariant and attractive set of a control system operating under bounded external disturbances and parametric uncertainties. This article extends this technique to a class of the so-called generalized homogeneous system. The generalized homogeneous optimal (in the sense of invariant ellipsoid) controller allows further improvement of the control system providing a faster convergence and smaller overshoots. Theoretical results are supported by numerical simulations and experiments.
引用
收藏
页码:6458 / 6465
页数:8
相关论文
共 50 条
  • [31] Homogeneous Differentiator Design using Implicit Lyapunov Function Method
    Polyakov, Andrey
    Efimov, Denis
    Perruquetti, Wilfrid
    2014 EUROPEAN CONTROL CONFERENCE (ECC), 2014, : 288 - 293
  • [32] Control Approach Based On Invariant Ellipsoid Set For Piecewise Affine System with Time Delay
    Liu Zhilin
    Li Yongtao
    Dong Yi
    Lin Zhuang
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 2026 - 2029
  • [33] Output Linear Controller for a Class of Nonlinear Systems Using the Invariant Ellipsoid Technique
    Gonzalez-Garcia, S.
    Polyakov, A.
    Poznyak, A.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 1160 - 1165
  • [34] Estimation of robust invariant set for switched linear systems using recursive state updating and robust invariant ellipsoid
    Okajima H.
    Fujinami K.
    SICE Journal of Control, Measurement, and System Integration, 2021, 14 (01) : 97 - 106
  • [35] On Invariant Ellipsoid for Linear Systems by Saturated Controls
    Zhou Bin
    Duan Guangren
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 2, 2008, : 71 - 75
  • [36] Decentralized Sensor Fault-Tolerant Control of DC Microgrids Using the Attracting Ellipsoid Method
    Soliman, Hisham M.
    Bayoumi, Ehab H. E.
    El-Sheikhi, Farag A.
    De Santis, Michele
    SENSORS, 2023, 23 (16)
  • [37] The nonintegrability of the problem on the motion of a homogeneous liquid ellipsoid
    S. L. Ziglin
    Doklady Physics, 2009, 54 : 348 - 349
  • [38] A NOTE ON THE POTENTIAL OF A HOMOGENEOUS ELLIPSOID IN ELLIPSOIDAL COORDINATES
    MILOH, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04): : 581 - 584
  • [39] The Nonintegrability of the Problem on the Motion of a Homogeneous Liquid Ellipsoid
    Ziglin, S. L.
    DOKLADY PHYSICS, 2009, 54 (07) : 348 - 349
  • [40] Control of the motion of a triaxial ellipsoid in a fluid using rotors
    Borisov, A. V.
    Vetchanin, E. V.
    Kilin, A. A.
    MATHEMATICAL NOTES, 2017, 102 (3-4) : 455 - 464