Homogeneous Control Design Using Invariant Ellipsoid Method

被引:0
|
作者
Wang, Siyuan [1 ]
Duan, Haibin [2 ]
Zheng, Gang [3 ]
Ping, Xubin [4 ]
Boutat, Driss [5 ]
Polyakov, Andrey
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
[2] Beihang Univ BUAA, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] INRIA Lille, F-59000 Lille, France
[4] Xidian Univ, Xidian 710071, Peoples R China
[5] INSA Ctr Val de Loire, F-18000 Bourges, France
基金
中国国家自然科学基金;
关键词
Ellipsoids; Symmetric matrices; Perturbation methods; Control design; Vectors; Uncertainty; Tuning; Homogeneity; invariant set; linear matrix inequality (LMI); BOUNDED EXOGENOUS DISTURBANCES; H-INFINITY-CONTROL; ROBUST STABILIZATION; LINEAR-SYSTEMS; MIMO SYSTEMS; FEEDBACK; TRANSFORMATIONS; STABILIZABILITY; STABILITY;
D O I
10.1109/TAC.2024.3384844
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The invariant ellipsoid method is aimed at minimization of the smallest invariant and attractive set of a control system operating under bounded external disturbances and parametric uncertainties. This article extends this technique to a class of the so-called generalized homogeneous system. The generalized homogeneous optimal (in the sense of invariant ellipsoid) controller allows further improvement of the control system providing a faster convergence and smaller overshoots. Theoretical results are supported by numerical simulations and experiments.
引用
收藏
页码:6458 / 6465
页数:8
相关论文
共 50 条
  • [41] Control of the motion of a triaxial ellipsoid in a fluid using rotors
    A. V. Borisov
    E. V. Vetchanin
    A. A. Kilin
    Mathematical Notes, 2017, 102 : 455 - 464
  • [42] On the practical stability of control processes governed by implicit differential equations: The invariant ellipsoid based approach
    Azhmyakov, Vadim
    Poznyak, Alex
    Juarez, Raymundo
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (08): : 2229 - 2243
  • [43] Ellipsoid invariant set-based robust model predictive control for repetitive processes with constraints
    Lu, Jingyi
    Cao, Zhixing
    Gao, Furong
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (09): : 1018 - 1026
  • [44] Sliding mode parameter adjustment for perturbed linear systems with actuators via invariant ellipsoid method
    Davila, J.
    Poznyak, A.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (05) : 473 - 487
  • [45] MANIPULATOR CONTROL DESIGN USING A NONPARAMETRIC METHOD
    PAN, JH
    MILLS, JK
    VANDEVEGTE, J
    MECHANISM AND MACHINE THEORY, 1995, 30 (08) : 1241 - 1254
  • [46] Analysis and design of fuzzy control systems with random delays using invariant cones
    Sinha, ASC
    Pidaparti, R
    Rizkalla, M
    El-Sharkawy, MA
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 553 - 557
  • [47] The Nonexistence of an Invariant Measure for an Inhomogeneous Ellipsoid Rolling on a Plane
    A. V. Borisov
    I. S. Mamaev
    Mathematical Notes, 2005, 77 : 855 - 857
  • [48] ON THE ROBUST CONTROL DESIGN FOR A CLASS OF NONLINEARLY AFFINE CONTROL SYSTEMS: THE ATTRACTIVE ELLIPSOID APPROACH
    Azhmyakov, Vadim
    Poznyak, Alex
    Gonzalez, Omar
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (03) : 579 - 593
  • [49] THE GENERALIZED ELLIPSOID METHOD
    Stetsyuk, P., I
    Fesiuk, O., V
    Khomyak, O. N.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2018, 54 (04) : 576 - 584
  • [50] THE ELLIPSOID METHOD - A SURVEY
    BLAND, RG
    GOLDFARB, D
    TODD, MJ
    OPERATIONS RESEARCH, 1981, 29 (06) : 1039 - 1091