Smale Horseshoes and Symbolic Dynamics in Perturbed Nonlinear Schrödinger Equations

被引:0
|
作者
Y. Li
机构
[1] Department of Mathematics,
[2] University of California at Los Angeles,undefined
[3] Los Angeles,undefined
[4] CA 90024,undefined
[5] USA,undefined
[6] Present Address: Department of Mathematics,undefined
[7] 2-336,undefined
[8] Massachusetts Institute for Technology,undefined
[9] Cambridge,undefined
[10] MA 02139,undefined
[11] USA. Also,undefined
[12] School of Mathematics,undefined
[13] Institute of Advanced Study,undefined
[14] Princeton,undefined
[15] NJ 08540,undefined
[16] USA.,undefined
来源
关键词
Evolution Operator; Homoclinic Orbit; Symbolic Dynamics; Symmetric Pair; Type Assumption;
D O I
暂无
中图分类号
学科分类号
摘要
, which offers an interpretation of the numerical observation on the perturbed NLS system: chaotic center-wing jumping, of course under the ``except one point''—type conditions (A1)—(A3). This study is a generalization of the finite-dimensional study [14] to infinite-dimensional perturbed NLS systems.
引用
收藏
页码:363 / 415
页数:52
相关论文
共 50 条
  • [21] A system of nonlinear evolution Schrödinger equations
    Sh. M. Nasibov
    Doklady Mathematics, 2007, 76 : 708 - 712
  • [22] Semiclassical States of Nonlinear Schrödinger Equations
    A. Ambrosetti
    M. Badiale
    S. Cingolani
    Archive for Rational Mechanics and Analysis, 1997, 140 : 285 - 300
  • [23] Smale Horseshoes and Chaos in Discretized Perturbed NLS Systems
    郭柏灵
    常玉
    数学进展, 2004, (03) : 369 - 372
  • [24] Lagrangian nonlocal nonlinear Schrödinger equations
    Velasco-Juan, M.
    Fujioka, J.
    Chaos, Solitons and Fractals, 2022, 156
  • [25] Hamiltonian formalism for nonlinear Schr?dinger equations
    Pazarci, Ali
    Turhan, Umut Can
    Ghazanfari, Nader
    Gahramanov, Ilmar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 121
  • [26] Choreographies in the discrete nonlinear Schrödinger equations
    Renato Calleja
    Eusebius Doedel
    Carlos García-Azpeitia
    Carlos L. Pando L.
    The European Physical Journal Special Topics, 2018, 227 : 615 - 624
  • [27] Global solutions of nonlinear Schrödinger equations
    Martin Schechter
    Calculus of Variations and Partial Differential Equations, 2017, 56
  • [28] Group classification of nonlinear schrödinger equations
    Nikitin A.G.
    Popovych R.O.
    Ukrainian Mathematical Journal, 2001, 53 (8) : 1255 - 1265
  • [29] Singularly perturbed Neumann problem for fractional Schrdinger equations
    Guoyuan Chen
    Science China(Mathematics), 2018, 61 (04) : 695 - 708
  • [30] Singularly perturbed Neumann problem for fractional Schrödinger equations
    Guoyuan Chen
    Science China Mathematics, 2018, 61 : 695 - 708