Global solutions of nonlinear Schrödinger equations

被引:0
|
作者
Martin Schechter
机构
[1] University of California,Department of Mathematics
关键词
Primary 35J65; 58E05; 49B27;
D O I
暂无
中图分类号
学科分类号
摘要
We study the nonlinear Schrödinger equation in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} without making any periodicity assumptions on the potential or on the nonlinear term. This prevents us from using concentration compactness methods. Our assumptions are such that the potential does not change the essential spectrum of the linear operator. This results in [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0, \infty )$$\end{document} being the absolutely continuous part of the spectrum. If there are an infinite number of negative eigenvalues, they will converge to 0. In each case we obtain nontrivial solutions. We also obtain least energy solutions.
引用
收藏
相关论文
共 50 条