Smale Horseshoes and Symbolic Dynamics in Perturbed Nonlinear Schrödinger Equations

被引:0
|
作者
Y. Li
机构
[1] Department of Mathematics,
[2] University of California at Los Angeles,undefined
[3] Los Angeles,undefined
[4] CA 90024,undefined
[5] USA,undefined
[6] Present Address: Department of Mathematics,undefined
[7] 2-336,undefined
[8] Massachusetts Institute for Technology,undefined
[9] Cambridge,undefined
[10] MA 02139,undefined
[11] USA. Also,undefined
[12] School of Mathematics,undefined
[13] Institute of Advanced Study,undefined
[14] Princeton,undefined
[15] NJ 08540,undefined
[16] USA.,undefined
来源
关键词
Evolution Operator; Homoclinic Orbit; Symbolic Dynamics; Symmetric Pair; Type Assumption;
D O I
暂无
中图分类号
学科分类号
摘要
, which offers an interpretation of the numerical observation on the perturbed NLS system: chaotic center-wing jumping, of course under the ``except one point''—type conditions (A1)—(A3). This study is a generalization of the finite-dimensional study [14] to infinite-dimensional perturbed NLS systems.
引用
收藏
页码:363 / 415
页数:52
相关论文
共 50 条
  • [31] A Unified Approach to Singularly Perturbed Quasilinear Schrödinger Equations
    Daniele Cassani
    Youjun Wang
    Jianjun Zhang
    Milan Journal of Mathematics, 2020, 88 : 507 - 534
  • [32] Remarks on scattering for nonlinear Schrödinger equations
    Kenji Nakanishi
    Tohru Ozawa
    Nonlinear Differential Equations and Applications NoDEA, 2002, 9 : 45 - 68
  • [33] Normalized solutions of nonlinear Schrödinger equations
    Thomas Bartsch
    Sébastien de Valeriola
    Archiv der Mathematik, 2013, 100 : 75 - 83
  • [34] Stochastic nonlinear Schrödinger equations on tori
    Kelvin Cheung
    Razvan Mosincat
    Stochastics and Partial Differential Equations: Analysis and Computations, 2019, 7 : 169 - 208
  • [35] Relativistic Burgers and nonlinear SchrÖdinger equations
    O. K. Pashaev
    Theoretical and Mathematical Physics, 2009, 160 : 1022 - 1030
  • [36] Symmetries of separating nonlinear schrödinger equations
    Svetlichny G.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (1-2) : 28 - 35
  • [37] Scattering for Stochastic Nonlinear Schrödinger Equations
    Sebastian Herr
    Michael Röckner
    Deng Zhang
    Communications in Mathematical Physics, 2019, 368 : 843 - 884
  • [38] Discrete Derivative Nonlinear Schrödinger Equations
    Hennig, Dirk
    Cuevas-Maraver, Jesus
    MATHEMATICS, 2025, 13 (01)
  • [39] Dynamics of chaotic and hyperchaotic modified nonlinear Schrödinger equations and their compound synchronization
    Abed-Elhameed, Tarek M.
    Otefy, Mohamed
    Mahmoud, Gamal M.
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [40] Dynamics of high-order solitons in the nonlocal nonlinear Schrödinger equations
    Bo Yang
    Yong Chen
    Nonlinear Dynamics, 2018, 94 : 489 - 502