A Unified Approach to Singularly Perturbed Quasilinear Schrödinger Equations

被引:0
|
作者
Daniele Cassani
Youjun Wang
Jianjun Zhang
机构
[1] Università degli Studi dell’Insubria,Dip. di Scienza e Alta Tecnologia
[2] RISM–Riemann International School of Mathematics,Department of Mathematics
[3] South China University of Technology,College of Mathematics and Statistics
[4] Chongqing Jiaotong University,undefined
来源
关键词
35A15; 35J20; 35J62; Semiclassical states; critical growth; quasilinear Schrödinger equations; variational methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we present a unified approach to investigate existence and concentration of positive solutions for the following class of quasilinear Schrödinger equations, -ε2Δu+V(x)u∓ε2+γuΔu2=h(u),x∈RN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\varepsilon^2\Delta u+V(x)u\mp\varepsilon^{2+\gamma}u\Delta u^2=h(u),\ \ x\in \mathbb{R}^N, $$\end{document} where N⩾3,ε>0,V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\geqslant3, \varepsilon > 0, V(x)$$\end{document} is a positive external potential,h is a real function with subcritical or critical growth. The problem is quite sensitive to the sign changing of the quasilinear term as well as to the presence of the parameter γ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma>0$$\end{document}. Nevertheless, by means of perturbation type techniques, we establish the existence of a positive solution uε,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{\varepsilon,\gamma}$$\end{document} concentrating, as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon\rightarrow 0$$\end{document}, around minima points of the potential.
引用
收藏
页码:507 / 534
页数:27
相关论文
共 50 条