In this paper we present a unified approach to
investigate existence and concentration of positive solutions for the following class of quasilinear Schrödinger
equations,
-ε2Δu+V(x)u∓ε2+γuΔu2=h(u),x∈RN,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-\varepsilon^2\Delta
u+V(x)u\mp\varepsilon^{2+\gamma}u\Delta u^2=h(u),\ \ x\in
\mathbb{R}^N,
$$\end{document}
where N⩾3,ε>0,V(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N\geqslant3, \varepsilon > 0, V(x)$$\end{document} is a positive external potential,h is a real function with subcritical or critical growth. The problem is quite sensitive to the sign changing of the quasilinear term as well as to the presence of the parameter γ>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma>0$$\end{document}. Nevertheless, by means of perturbation type techniques, we establish the existence of a positive solution uε,γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u_{\varepsilon,\gamma}$$\end{document} concentrating, as ε→0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon\rightarrow 0$$\end{document}, around minima points of the potential.