Singularly perturbed Neumann problem for fractional Schrödinger equations

被引:0
|
作者
Guoyuan Chen
机构
[1] Zhejiang University of Finance & Economics,School of Data Sciences
来源
Science China Mathematics | 2018年 / 61卷
关键词
Neumann problem; nonlinear fractional Schrödinger equations; singular perturbation; fractional Laplacian; 35B25; 35B38; 35J61;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with a Neumann type problem for singularly perturbed fractional nonlinear Schrödinger equations with subcritical exponent. For some smooth bounded domain Ω ⊂ Rn, our boundary condition is given by ∫u(x)−u(y)|x−y|n+2sdy=0forx∈ℝn∖Ω¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int {\frac{{u\left( x \right) - u\left( y \right)}}{{{{\left| {x - y} \right|}^{n + 2s}}}}} dy = 0forx \in {\mathbb{R}^n} \setminus \overline \Omega $$\end{document}. We establish existence of non-negative small energy solutions, and also investigate the integrability of the solutions on Rn.
引用
收藏
页码:695 / 708
页数:13
相关论文
共 50 条
  • [2] Singularly perturbed Neumann problem for fractional Schrodinger equations
    Chen, Guoyuan
    [J]. SCIENCE CHINA-MATHEMATICS, 2018, 61 (04) : 695 - 708
  • [3] A Unified Approach to Singularly Perturbed Quasilinear Schrödinger Equations
    Daniele Cassani
    Youjun Wang
    Jianjun Zhang
    [J]. Milan Journal of Mathematics, 2020, 88 : 507 - 534
  • [4] Semiclassical states for non-cooperative singularly perturbed fractional Schrödinger systems
    Suhong Li
    Limeng Wu
    Xiaoyun Yue
    Lingmin Zhang
    [J]. Boundary Value Problems, 2022
  • [5] Optimal control for a nonlinear Schrödinger problem perturbed by multiplicative fractional noise
    Grecksch, Wilfried
    Lisei, Hannelore
    Breckner, Brigitte E.
    [J]. OPTIMIZATION, 2024,
  • [6] Schrödinger Equations with Fractional Laplacians
    Y. Hu
    G. Kallianpur
    [J]. Applied Mathematics & Optimization, 2000, 42 : 281 - 290
  • [7] Multipeak solutions for a singularly perturbed Neumann problem
    Dancer, EN
    Yan, SS
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1999, 189 (02) : 241 - 262
  • [8] On a singularly perturbed Neumann problem with the critical exponent
    Ghoussoub, N
    Gui, CF
    Zhu, MJ
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) : 1929 - 1946
  • [9] On the relation between Schrödinger and von Neumann equations
    V. I. Man'ko
    G. Marmo
    E. C. G. Sudarshan
    F. Zaccaria
    [J]. Journal of Russian Laser Research, 1999, 20 : 421 - 437
  • [10] BLOW UP OF SOLUTIONS TO NONLINEAR NEUMANN BOUNDARY VALUE PROBLEM FOR SCHRÓDINGER EQUATIONS
    Hayashi, Nakao
    Kaikina, Elena I.
    Naumkin, Pavel I.
    Ogawa, Takayoshi
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2024, 37 (11-12) : 843 - 858