BLOW UP OF SOLUTIONS TO NONLINEAR NEUMANN BOUNDARY VALUE PROBLEM FOR SCHRÓDINGER EQUATIONS

被引:0
|
作者
Hayashi, Nakao [1 ]
Kaikina, Elena I. [2 ]
Naumkin, Pavel I. [2 ]
Ogawa, Takayoshi [1 ]
机构
[1] Tohoku Univ Sendai, Math Inst, Sendai 9808578, Japan
[2] Ctr Ciencias Matemat, UNAM Campus Morelia AP 61-3 Xangari Morelia, Michoacan 58089, Mexico
关键词
D O I
10.57262/die037-1112-843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our purpose is to consider the life span of solutions to the nonlinear Neumann boundary value problem for one dimensional nonlinear Schr & ouml;dinger equation on a half-line {i partial derivative(t)u+(1)/(2)partial derivative(2)(x)u=0, t>0,x is an element of R+, u(0,x)=u(0)(x), x is an element of R+, -partial derivative(x)u(t,0)=g(t,0), where g(t,0)=e-(pi)/(4)i|u(t,0)|(q). We prove that for any q>2, and r>2(q-1), there exists an initial function u0 is an element of(center dot)H(x)(-(2/r-1/2) )such that the maximal existence time is finite.
引用
收藏
页码:843 / 858
页数:16
相关论文
共 50 条