On the geometry of folded cuspidal edges

被引:0
|
作者
Raúl Oset Sinha
Kentaro Saji
机构
[1] Universitat de València,Departament de Matemàtiques
[2] Kobe University,Department of Mathematics
来源
关键词
Cuspidal cross-cap; Folded umbrella; Cuspidal edge; Geometric invariants; Height functions; Singularities; 57R45; 53A05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the geometry of cuspidal Sk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_k$$\end{document} singularities in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document} obtained by folding generically a cuspidal edge. In particular we study the geometry of the cuspidal cross-cap M, i.e. the cuspidal S0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0$$\end{document} singularity. We study geometrical invariants associated to M and show that they determine it up to order 5. We then study the flat geometry (contact with planes) of a generic cuspidal cross-cap by classifying submersions which preserve it and relate the singularities of the resulting height functions with the geometric invariants.
引用
收藏
页码:627 / 650
页数:23
相关论文
共 50 条
  • [1] On the geometry of folded cuspidal edges
    Oset Sinha, Raul
    Saji, Kentaro
    REVISTA MATEMATICA COMPLUTENSE, 2018, 31 (03): : 627 - 650
  • [2] Geometry of cuspidal edges with boundary
    Martins, Luciana F.
    Saji, Kentaro
    TOPOLOGY AND ITS APPLICATIONS, 2018, 234 : 209 - 219
  • [3] ISOMETRIC DEFORMATIONS OF CUSPIDAL EDGES
    Naokawa, Kosuke
    Umehara, Masaaki
    Yamada, Kotaro
    TOHOKU MATHEMATICAL JOURNAL, 2016, 68 (01) : 73 - 90
  • [4] Geometric Invariants of Cuspidal Edges
    Martins, Luciana de Fatima
    Saji, Kentaro
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2016, 68 (02): : 445 - 462
  • [5] Parallel and dual surfaces of cuspidal edges
    Teramoto, Keisuke
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2016, 44 : 52 - 62
  • [6] Cuspidal crosscaps and folded singularities on a maxface and a minface
    Bardhan, Rivu
    Dhochak, Anu
    Kumar, Pradip
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (04): : 1142 - 1149
  • [7] Algorithms of generating cuspidal edges of developable surfaces
    Kovaleva, N., V
    Fedorova, A., V
    Pashyan, D. A.
    INTERNATIONAL CONFERENCE ON CONSTRUCTION, ARCHITECTURE AND TECHNOSPHERE SAFETY (ICCATS 2020), 2020, 962
  • [8] ON THE FLAT GEOMETRY OF THE CUSPIDAL EDGE
    Oset Sinha, Raul
    Tari, Farid
    OSAKA JOURNAL OF MATHEMATICS, 2018, 55 (03) : 393 - 421
  • [9] APPROXIMATIONS OF SINGULAR SURFACES WITH STANDARD CUSPIDAL EDGES
    Saji, Kentaro
    Yamamoto, Yoshiki
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (01) : 16 - 29
  • [10] Electrochemistry of folded graphene edges
    Ambrosi, Adriano
    Bonanni, Alessandra
    Pumera, Martin
    NANOSCALE, 2011, 3 (05) : 2256 - 2260