An Eigenvalue Problem Involving the (p, q)-Laplacian With a Parametric Boundary Condition

被引:0
|
作者
Luminiţa Barbu
Andreea Burlacu
Gheorghe Moroşanu
机构
[1] Ovidius University,Faculty of Mathematics and Informatics
[2] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
[3] Academy of Romanian Scientists,undefined
来源
关键词
Eigenvalues; -Laplacian; variational methods; Krasnosel’skiĭ genus; Ljusternik-Schnirelmann theory; manifold; 35J60; 35J92; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, be a bounded domain with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}. Consider the following nonlinear eigenvalue problem -Δpu-Δqu+ρ(x)∣u∣q-2u=λα(x)∣u∣r-2uinΩ,∂u∂νpq+γ(x)∣u∣q-2u=λβ(x)∣u∣r-2uon∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} -\Delta _p u-\Delta _q u+\rho (x) \mid u\mid ^{q-2}u=\lambda \alpha (x) \mid u\mid ^{r-2}u\ \ \text{ in } ~ \Omega ,\\ \frac{\partial u}{\partial \nu _{pq}}+\gamma (x)\mid u\mid ^{q-2}u=\lambda \beta (x) \mid u\mid ^{r-2}u ~ \text{ on } ~ \partial \Omega , \end{array}\right. \end{aligned}$$\end{document}where p,q,r∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q,r\in (1,\infty )$$\end{document} with p≠q;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne q;$$\end{document}α,ρ∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \rho \in L^{\infty }(\Omega )$$\end{document}, β,γ∈L∞(∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta , \gamma \in L^{\infty }(\partial \Omega )$$\end{document}, Δθu:=div(‖∇u‖θ-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\theta }u:= \text{ div }~ (\Vert \nabla u\Vert ^{\theta -2}\nabla u)$$\end{document}, θ∈{p,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in \{p,q\}$$\end{document}, and ∂u∂νpq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial u}{\partial \nu _{pq}}$$\end{document} denotes the conormal derivative corresponding to the differential operator -Δp-Δq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _p -\Delta _q$$\end{document}. Under suitable assumptions, we provide the full description of the spectrum of the above problem in eight cases out of ten, and for the other two complementary cases, we obtain subsets of the corresponding spectra. Notice that when some of the potentials α,β,ρ,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta , \rho , \gamma $$\end{document} are null functions, the above eigenvalue problem reduces to Neumann-, Robin- or Steklov-type problems, and so we obtain the spectra of these particular eigenvalue problems.
引用
收藏
相关论文
共 50 条
  • [31] On Nonlocal p(x)-Laplacian Problems Involving No Flux Boundary Condition
    Ourraoui, Anass
    [J]. NOTE DI MATEMATICA, 2015, 35 (02): : 69 - 80
  • [32] On the Solvability of Caputo q-Fractional Boundary Value Problem Involving p-Laplacian Operator
    Aktuglu, Huseyin
    Ozarslan, Mehmet Ali
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [33] A p(x)-Kirchhoff type problem involving the p(x)-Laplacian-like operators with Dirichlet boundary condition
    El Ouaarabi, Mohamed
    El Hammar, Hasnae
    Allalou, Chakir
    Melliani, Said
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (02): : 351 - 366
  • [34] The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition
    Zhang, Xinguang
    Liu, Lishan
    Wiwatanapataphee, Benchawan
    Wu, Yonghong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 412 - 422
  • [35] On a (p, q)-Laplacian problem with parametric concave term and asymmetric perturbation
    Marano, Salvatore A.
    Mosconi, Sunra J. N.
    Papageorgiou, Nikolaos S.
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 109 - 125
  • [36] Nonlinear eigenvalue problems for the (p, q)-Laplacian
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 172
  • [37] BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN ON THE SIERPINSKI GASKET
    Priyadarshi, Amit
    Sahu, Abhilash
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (01)
  • [38] EIGENVALUE PROBLEM WITH PARAMETER IN BOUNDARY CONDITION
    EASTHAM, MSP
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1962, 13 (52): : 304 - &
  • [39] On eigenvalue problems governed by the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 63 - 76
  • [40] Existence results for a p(x)-Laplacian problem with nonlinear boundary condition
    Hammou, Mustapha Ait
    [J]. AFRIKA MATEMATIKA, 2022, 33 (04)