An Eigenvalue Problem Involving the (p, q)-Laplacian With a Parametric Boundary Condition

被引:0
|
作者
Luminiţa Barbu
Andreea Burlacu
Gheorghe Moroşanu
机构
[1] Ovidius University,Faculty of Mathematics and Informatics
[2] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
[3] Academy of Romanian Scientists,undefined
来源
关键词
Eigenvalues; -Laplacian; variational methods; Krasnosel’skiĭ genus; Ljusternik-Schnirelmann theory; manifold; 35J60; 35J92; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb {R}^N$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document}, be a bounded domain with smooth boundary ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}. Consider the following nonlinear eigenvalue problem -Δpu-Δqu+ρ(x)∣u∣q-2u=λα(x)∣u∣r-2uinΩ,∂u∂νpq+γ(x)∣u∣q-2u=λβ(x)∣u∣r-2uon∂Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{l} -\Delta _p u-\Delta _q u+\rho (x) \mid u\mid ^{q-2}u=\lambda \alpha (x) \mid u\mid ^{r-2}u\ \ \text{ in } ~ \Omega ,\\ \frac{\partial u}{\partial \nu _{pq}}+\gamma (x)\mid u\mid ^{q-2}u=\lambda \beta (x) \mid u\mid ^{r-2}u ~ \text{ on } ~ \partial \Omega , \end{array}\right. \end{aligned}$$\end{document}where p,q,r∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q,r\in (1,\infty )$$\end{document} with p≠q;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ne q;$$\end{document}α,ρ∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \rho \in L^{\infty }(\Omega )$$\end{document}, β,γ∈L∞(∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta , \gamma \in L^{\infty }(\partial \Omega )$$\end{document}, Δθu:=div(‖∇u‖θ-2∇u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _{\theta }u:= \text{ div }~ (\Vert \nabla u\Vert ^{\theta -2}\nabla u)$$\end{document}, θ∈{p,q}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta \in \{p,q\}$$\end{document}, and ∂u∂νpq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial u}{\partial \nu _{pq}}$$\end{document} denotes the conormal derivative corresponding to the differential operator -Δp-Δq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta _p -\Delta _q$$\end{document}. Under suitable assumptions, we provide the full description of the spectrum of the above problem in eight cases out of ten, and for the other two complementary cases, we obtain subsets of the corresponding spectra. Notice that when some of the potentials α,β,ρ,γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta , \rho , \gamma $$\end{document} are null functions, the above eigenvalue problem reduces to Neumann-, Robin- or Steklov-type problems, and so we obtain the spectra of these particular eigenvalue problems.
引用
收藏
相关论文
共 50 条