BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN ON THE SIERPINSKI GASKET

被引:7
|
作者
Priyadarshi, Amit [1 ]
Sahu, Abhilash [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, Hauz Khas, New Delhi 110016, India
关键词
Sierpinski Gasket; p-Laplacian; Weak Solution; p-Energy; Euler Functional; NONLINEAR ELLIPTIC-EQUATIONS; FRACTAL SETS;
D O I
10.1142/S0218348X1850007X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following boundary value problem involving the weak p-Laplacian: -Delta(p)u = lambda a(x)|u|(q-1)u + b(x)|u|(l-1)u in S\S-0; u = 0 on S-0, where S is the Sierpinski gasket in R-2, S-0 is its boundary, lambda > 0, p > 1, 0 < q < p - 1 < l and a, b : S -> R are bounded nonnegative functions. We will show the existence of at least two nontrivial weak solutions to the above problem for a certain range of lambda using the analysis of fibering maps on suitable subsets.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The p-Laplacian on the Sierpinski gasket
    Strichartz, RS
    Wong, C
    [J]. NONLINEARITY, 2004, 17 (02) : 595 - 616
  • [2] ON A MIXED BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN
    Averna, D.
    Buccellato, S. M.
    Tornatore, E.
    [J]. MATEMATICHE, 2011, 66 (01): : 93 - 104
  • [3] Three solutions for a Dirichlet boundary value problem involving the p-Laplacian
    Afrouzi, G. A.
    Heidarkhani, S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (10) : 2281 - 2288
  • [4] Multiple solutions for a discrete boundary value problem involving the p-Laplacian
    Candito, Pasquale
    Giovannelli, Nicola
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 959 - 964
  • [5] THREE SOLUTIONS FOR A NEUMANN BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN
    Averna, Diego
    Bonanno, Gabriele
    [J]. MATEMATICHE, 2005, 60 (01): : 81 - 91
  • [6] Non-homogeneous p-Laplacian equations on the Sierpinski gasket
    Sahu, Abhilash
    Prasad, M. Guru Prem
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 6545 - 6557
  • [7] Three solutions for a perturbed Dirichlet boundary value problem involving the p-Laplacian
    Shang, Xudong
    Zhang, Jihui
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1417 - 1422
  • [8] SIGN-CHANGING SOLUTIONS FOR THE BOUNDARY VALUE PROBLEM INVOLVING THE FRACTIONAL p-LAPLACIAN
    Wu, Pengcheng
    Zhou, Yuying
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (02) : 597 - 619
  • [9] Uniqueness for an overdetermined boundary value problem for the p-Laplacian
    Bahrami, F
    Shahgholian, H
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) : 745 - 750
  • [10] Solvability of boundary value problem with p-Laplacian at resonance
    Jiang, Weihua
    [J]. BOUNDARY VALUE PROBLEMS, 2014,