Non-homogeneous p-Laplacian equations on the Sierpinski gasket

被引:0
|
作者
Sahu, Abhilash [1 ,2 ]
Prasad, M. Guru Prem [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
[2] Univ Petr & Energy Studies, Sch Engn, Dept Math, Dehra Dun, India
关键词
Euler functional; non-homogeneous equation; p-energy; Sierpinski gasket; weak p-Laplacian; weak solutions; MULTIPLE EXISTENCE; ELLIPTIC-EQUATIONS;
D O I
10.1002/mma.8923
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be the Sierpinski gasket in R-2 and S-0 denote the boundary of S. In this paper, we study the following non-homogeneous p-Laplacian equation -delta(p)u = lambda|u|(q-2)u + f in S\S-0 u = 0 on S-0, where p, q, lambda are real numbers such that lambda > 0, 1 < p < q and the function f : S -> R is suitably chosen. The existence of at least two nontrivial weak solutions to the above non-homogeneous equation on the Sierpinski gasket will be established.
引用
收藏
页码:6545 / 6557
页数:13
相关论文
共 50 条