BOUNDARY VALUE PROBLEM INVOLVING THE p-LAPLACIAN ON THE SIERPINSKI GASKET

被引:7
|
作者
Priyadarshi, Amit [1 ]
Sahu, Abhilash [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, Hauz Khas, New Delhi 110016, India
关键词
Sierpinski Gasket; p-Laplacian; Weak Solution; p-Energy; Euler Functional; NONLINEAR ELLIPTIC-EQUATIONS; FRACTAL SETS;
D O I
10.1142/S0218348X1850007X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following boundary value problem involving the weak p-Laplacian: -Delta(p)u = lambda a(x)|u|(q-1)u + b(x)|u|(l-1)u in S\S-0; u = 0 on S-0, where S is the Sierpinski gasket in R-2, S-0 is its boundary, lambda > 0, p > 1, 0 < q < p - 1 < l and a, b : S -> R are bounded nonnegative functions. We will show the existence of at least two nontrivial weak solutions to the above problem for a certain range of lambda using the analysis of fibering maps on suitable subsets.
引用
收藏
页数:13
相关论文
共 50 条