Averaging and periodic solutions in the plane and parametrically excited pendulum

被引:0
|
作者
Noureddine Mehidi
机构
[1] University of Bejaia,Laboratory of applied mathematics
来源
Meccanica | 2007年 / 42卷
关键词
Averaging; Periodic solutions; Symmetries; Pendulum;
D O I
暂无
中图分类号
学科分类号
摘要
We first approximate the solutions of the nonautonomous oscillating suspension point pendulum equation by the solutions of a second order autonomous differential equation. Using the strict monotonicity of the periodic solutions of the approximating equation, we prove the existence of a large number of subharmonic periodic solutions of the plane pendulum when its point of suspension is excited parametrically.
引用
收藏
页码:403 / 407
页数:4
相关论文
共 50 条
  • [41] REGULAR AND CHAOTIC MOTION OF A DAMPED PARAMETRICALLY EXCITED PENDULUM
    SCHULTZE, U
    BAHR, U
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (08): : 359 - 362
  • [42] Locating oscillatory orbits of the parametrically-excited pendulum
    Clifford, MJ
    Bishop, SR
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1996, 37 : 309 - 319
  • [45] Complicated regular and chaotic motions of the parametrically excited pendulum
    Butikov, Eugene I.
    Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 6, Pts A-C, 2005, : 743 - 764
  • [46] On periodic solutions of parametrically excited complex non-linear dynamical systems
    Mahmoud, GM
    Aly, SAH
    PHYSICA A, 2000, 278 (3-4): : 390 - 404
  • [47] Averaging in Parametrically Excited Systems - A State Space Formulation
    Pfau, Bastian
    Breunung, Thomas
    Dohnal, Fadi
    Markert, Richard
    CSNDD 2016 - INTERNATIONAL CONFERENCE ON STRUCTURAL NONLINEAR DYNAMICS AND DIAGNOSIS, 2016, 83
  • [48] Practical Stability of Rotating Solutions in a Parametrically Excited Experimental Pendulum via Dynamical Integrity Concepts
    Lenci, Stefano
    Luzi, William
    Venturi, Enrico
    Rega, Giuseppe
    IUTAM SYMPOSIUM ON NONLINEAR DYNAMICS FOR ADVANCED TECHNOLOGIES AND ENGINEERING DESIGN, 2013, 32 : 173 - 184
  • [49] Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective
    Lenci, Stefano
    Rega, Giuseppe
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (9-10) : 814 - 824
  • [50] PARAMETRICALLY DRIVEN PENDULUM AND EXACT-SOLUTIONS
    STEEB, WH
    EULER, N
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (08) : 1527 - 1530