PARAMETRICALLY DRIVEN PENDULUM AND EXACT-SOLUTIONS

被引:1
|
作者
STEEB, WH
EULER, N
机构
[1] Department of Applied Mathematics and Nonlinear Studies, Rand Afrikaans University, Johannesburg
关键词
D O I
10.1007/BF00673983
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The parametrically driven pendulum x+f1(t)x+f2(t) sin x = 0 cannot be solved in closed form for arbitrary functions f1, f2. We apply the Painleve test to obtain the constraint on the functions f1 and f2 for which the equation passes the test. The constraint on f1 and f2, a differential equation which f1 and f2 obey, is discussed and solutions are given. The third Painleve transcendent plays a central role.
引用
收藏
页码:1527 / 1530
页数:4
相关论文
共 50 条
  • [1] MAGNETICALLY DRIVEN JETS AND WINDS - EXACT-SOLUTIONS
    CONTOPOULOS, J
    LOVELACE, RVE
    [J]. ASTROPHYSICAL JOURNAL, 1994, 429 (01): : 139 - 152
  • [2] Analysis of a parametrically driven pendulum
    Kobes, R
    Liu, JX
    Peles, S
    [J]. PHYSICAL REVIEW E, 2001, 63 (03): : 362191 - 3621917
  • [3] MAGNETICALLY DRIVEN RELATIVISTIC JETS AND WINDS - EXACT-SOLUTIONS
    CONTOPOULOS, J
    [J]. ASTROPHYSICAL JOURNAL, 1994, 432 (02): : 508 - 517
  • [4] GEOMETRIC ASPECTS OF THE PARAMETRICALLY DRIVEN PENDULUM
    CAPECCHI, D
    [J]. NONLINEAR DYNAMICS, 1995, 7 (02) : 231 - 247
  • [5] CONTROL OF A CHAOTIC PARAMETRICALLY DRIVEN PENDULUM
    STARRETT, J
    TAGG, R
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (11) : 1974 - 1977
  • [6] Subharmonic resonances of the parametrically driven pendulum
    Butikov, EI
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (30): : 6209 - 6231
  • [7] EXACT-SOLUTIONS IN COSMOLOGY
    MACCALLUM, MAH
    [J]. LECTURE NOTES IN PHYSICS, 1984, 205 : 334 - 366
  • [8] GUESSING EXACT-SOLUTIONS
    WALL, CR
    [J]. FIBONACCI QUARTERLY, 1985, 23 (01): : 80 - 80
  • [9] Rotating solutions of the parametrically excited pendulum
    Garira, W
    Bishop, SR
    [J]. JOURNAL OF SOUND AND VIBRATION, 2003, 263 (01) : 233 - 239
  • [10] Exact stationary solutions of the parametrically driven and damped nonlinear Dirac equation
    Quintero, Niurka R.
    Sanchez-Rey, Bernardo
    [J]. CHAOS, 2019, 29 (09)