Averaging and periodic solutions in the plane and parametrically excited pendulum

被引:0
|
作者
Noureddine Mehidi
机构
[1] University of Bejaia,Laboratory of applied mathematics
来源
Meccanica | 2007年 / 42卷
关键词
Averaging; Periodic solutions; Symmetries; Pendulum;
D O I
暂无
中图分类号
学科分类号
摘要
We first approximate the solutions of the nonautonomous oscillating suspension point pendulum equation by the solutions of a second order autonomous differential equation. Using the strict monotonicity of the periodic solutions of the approximating equation, we prove the existence of a large number of subharmonic periodic solutions of the plane pendulum when its point of suspension is excited parametrically.
引用
收藏
页码:403 / 407
页数:4
相关论文
共 50 条
  • [21] Competing Dynamic Solutions in a Parametrically Excited Pendulum: Attractor Robustness and Basin Integrity
    Lenci, Stefano
    Rega, Giuseppe
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2008, 3 (04):
  • [22] Competing dynamic solutions in a parametrically excited pendulum: Attractor robustness and basin integrity
    Lenci, Stefano
    Rega, Giuseppe
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2007, VOL 5, PTS A-C,, 2008, : 1737 - 1745
  • [23] Onset instability of a parametrically excited pendulum array
    Chen, Weizhong
    Lin, Wengang
    Zhu, Yifei
    PHYSICAL REVIEW E, 2007, 75 (01):
  • [24] Stable rotation of a parametrically excited double pendulum
    Nagamine, Takuo
    Sato, Yutchi
    Koseki, Yoshikazu
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (02) : 111 - 124
  • [25] Asymptotic Analysis of Parametrically Excited Spring Pendulum
    Starosta, R.
    Awrejcewicz, J.
    SYROM 2009: PROCEEDINGS OF THE 10TH IFTOMM INTERNATIONAL SYMPOSIUM ON SCIENCE OF MECHANISMS AND MACHINES, 2009, 2010, : 421 - +
  • [26] Chaos in a Parametrically Excited Pendulum with Damping Force
    Lu, Chunqing
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 3 - 27
  • [27] Symmetry breaking bifurcations of a parametrically excited pendulum
    B. P. Mann
    M. A. Koplow
    Nonlinear Dynamics, 2006, 46 : 427 - 437
  • [28] APPROXIMATING THE ESCAPE ZONE FOR THE PARAMETRICALLY EXCITED PENDULUM
    CLIFFORD, MJ
    BISHOP, SR
    JOURNAL OF SOUND AND VIBRATION, 1994, 172 (04) : 572 - 576
  • [29] Rotating orbits of a parametrically-excited pendulum
    Xu, X
    Wiercigroch, M
    Cartmell, MP
    CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1537 - 1548
  • [30] Symmetry breaking bifurcations of a parametrically excited pendulum
    Mann, B. P.
    Koplow, M. A.
    NONLINEAR DYNAMICS, 2006, 46 (04) : 427 - 437