Locating oscillatory orbits of the parametrically-excited pendulum

被引:31
|
作者
Clifford, MJ
Bishop, SR
机构
关键词
D O I
10.1017/S0334270000010687
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method is considered for locating oscillating, nonrotating solutions for the parametrically-excited pendulum by inferring that a particular horseshoe exists in the stable and unstable manifolds of the local saddles. In particular, odd-periodic solutions are determined which are difficult to locate by alternative numerical techniques. A pseudo-Anosov braid is also located which implies the existence of a countable infinity of periodic orbits without the horseshoe assumption being necessary.
引用
收藏
页码:309 / 319
页数:11
相关论文
共 50 条
  • [1] Rotating orbits of a parametrically-excited pendulum
    Xu, X
    Wiercigroch, M
    Cartmell, MP
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1537 - 1548
  • [2] Oscillatory orbits of the parametrically excited pendulum
    Garira, W
    Bishop, SR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10): : 2949 - 2958
  • [3] Rotating orbits of a parametrically-excited pendulum (vol 23, pg 1537, 2005)
    Xu, X
    Wiercigroch, M
    Cartnell, M
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 29 (04) : 1045 - 1045
  • [4] ROTATING PERIODIC-ORBITS OF THE PARAMETRICALLY EXCITED PENDULUM
    CLIFFORD, MJ
    BISHOP, SR
    [J]. PHYSICS LETTERS A, 1995, 201 (2-3) : 191 - 196
  • [5] UNSTABLE PERIODIC-ORBITS IN THE PARAMETRICALLY EXCITED PENDULUM
    VANDEWATER, W
    HOPPENBROUWERS, M
    CHRISTIANSEN, F
    [J]. PHYSICAL REVIEW A, 1991, 44 (10): : 6388 - 6398
  • [6] Nonlinear response of parametrically-excited MEMS
    Rhoads, Jeffrey F.
    Shaw, Steven W.
    Turner, Kimberly L.
    Moehlis, Jeff
    DeMartini, Barry E.
    Zhang, Wenhua
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2005, : 453 - 461
  • [7] NON ROTATING PERIODIC-ORBITS IN THE PARAMETRICALLY EXCITED PENDULUM
    BISHOP, SR
    CLIFFORD, MJ
    [J]. EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1994, 13 (04) : 581 - 587
  • [8] Stabilizing the parametrically excited pendulum onto high order periodic orbits
    Bishop, SR
    Xu, D
    [J]. JOURNAL OF SOUND AND VIBRATION, 1996, 194 (02) : 287 - 293
  • [9] Reflections and mirror effect of parametrically-excited solitons at a boundary
    王新龙
    [J]. Science China Mathematics, 1995, (03) : 335 - 341
  • [10] Control of the parametrically excited pendulum
    Bishop, SR
    Xu, DL
    [J]. IUTAM SYMPOSIUM ON INTERACTION BETWEEN DYNAMICS AND CONTROL IN ADVANCED MECHANICAL SYSTEMS, 1997, 52 : 43 - 50