NON ROTATING PERIODIC-ORBITS IN THE PARAMETRICALLY EXCITED PENDULUM

被引:0
|
作者
BISHOP, SR
CLIFFORD, MJ
机构
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Non-rotating solutions for the parametrically excited pendulum are considered, and comparison is made between the pendulum and a system which permits ecpape from a symmetric potential well. Two escape or failure scenarios are identified by a bifurcation diagram, and stable periodic orbits are identified using methods of symbolic dynamics and path following techniques.
引用
收藏
页码:581 / 587
页数:7
相关论文
共 50 条
  • [1] ROTATING PERIODIC-ORBITS OF THE PARAMETRICALLY EXCITED PENDULUM
    CLIFFORD, MJ
    BISHOP, SR
    [J]. PHYSICS LETTERS A, 1995, 201 (2-3) : 191 - 196
  • [2] UNSTABLE PERIODIC-ORBITS IN THE PARAMETRICALLY EXCITED PENDULUM
    VANDEWATER, W
    HOPPENBROUWERS, M
    CHRISTIANSEN, F
    [J]. PHYSICAL REVIEW A, 1991, 44 (10): : 6388 - 6398
  • [3] Rotating orbits of a parametrically-excited pendulum
    Xu, X
    Wiercigroch, M
    Cartmell, MP
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1537 - 1548
  • [4] Stabilizing the parametrically excited pendulum onto high order periodic orbits
    Bishop, SR
    Xu, D
    [J]. JOURNAL OF SOUND AND VIBRATION, 1996, 194 (02) : 287 - 293
  • [5] Oscillatory orbits of the parametrically excited pendulum
    Garira, W
    Bishop, SR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10): : 2949 - 2958
  • [6] Rotating solutions of the parametrically excited pendulum
    Garira, W
    Bishop, SR
    [J]. JOURNAL OF SOUND AND VIBRATION, 2003, 263 (01) : 233 - 239
  • [7] Rotating orbits of a parametrically-excited pendulum (vol 23, pg 1537, 2005)
    Xu, X
    Wiercigroch, M
    Cartnell, M
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 29 (04) : 1045 - 1045
  • [8] PERIODIC-ORBITS IN A ROTATING TRIAXIAL POTENTIAL
    MULDER, WA
    HOOIMEYER, JRA
    [J]. ASTRONOMY & ASTROPHYSICS, 1984, 134 (01): : 158 - 170
  • [9] BIFURCATIONS OF PERIODIC-ORBITS IN A ROTATING GALAXY
    CARANICOLAS, N
    MARAPOULOU, J
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 1983, 96 (02) : 375 - 380
  • [10] Locating oscillatory orbits of the parametrically-excited pendulum
    Clifford, MJ
    Bishop, SR
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1996, 37 : 309 - 319