NON ROTATING PERIODIC-ORBITS IN THE PARAMETRICALLY EXCITED PENDULUM

被引:0
|
作者
BISHOP, SR
CLIFFORD, MJ
机构
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Non-rotating solutions for the parametrically excited pendulum are considered, and comparison is made between the pendulum and a system which permits ecpape from a symmetric potential well. Two escape or failure scenarios are identified by a bifurcation diagram, and stable periodic orbits are identified using methods of symbolic dynamics and path following techniques.
引用
收藏
页码:581 / 587
页数:7
相关论文
共 50 条
  • [31] UNSTABLE PERIODIC-ORBITS AND PREDICTION
    PAWELZIK, K
    SCHUSTER, HG
    PHYSICAL REVIEW A, 1991, 43 (04): : 1808 - 1812
  • [32] A SOLUTION USING PERIODIC-ORBITS
    BLAINE, L
    FIBONACCI QUARTERLY, 1992, 30 (04): : 371 - 372
  • [33] METHOD FOR CONSTRUCTING PERIODIC-ORBITS
    EDELMAN, C
    ASTRONOMY & ASTROPHYSICS, 1982, 111 (02) : 220 - 223
  • [34] PERIODIC-ORBITS, ADIABATICITY AND STABILITY
    POLLAK, E
    CHEMICAL PHYSICS, 1981, 61 (03) : 305 - 316
  • [35] THE PRESENT STATUS OF PERIODIC-ORBITS
    HADJIDEMETRIOU, JD
    CELESTIAL MECHANICS, 1981, 23 (03): : 277 - 286
  • [36] NOOSE BIFURCATION OF PERIODIC-ORBITS
    KENT, P
    ELGIN, J
    NONLINEARITY, 1991, 4 (04) : 1045 - 1061
  • [37] TARGETING UNSTABLE PERIODIC-ORBITS
    CHIZHEVSKY, VN
    GLORIEUX, P
    PHYSICAL REVIEW E, 1995, 51 (04) : R2701 - R2704
  • [38] ON THE PERIODIC-ORBITS OF THE CONTOPOULOS HAMILTONIAN
    GRAU, M
    LLIBRE, J
    ROS, RM
    LECTURE NOTES IN PHYSICS, 1983, 179 : 284 - 286
  • [39] LOCALIZED CHAOS ON PERIODIC-ORBITS
    SINGH, R
    MARU, VM
    MOHARIR, PS
    CURRENT SCIENCE, 1995, 68 (05): : 497 - 500
  • [40] PERIODIC-ORBITS OF TRANSVERSAL MAPS
    CASASAYAS, J
    LLIBRE, J
    NUNES, A
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 118 : 161 - 181