NON ROTATING PERIODIC-ORBITS IN THE PARAMETRICALLY EXCITED PENDULUM

被引:0
|
作者
BISHOP, SR
CLIFFORD, MJ
机构
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Non-rotating solutions for the parametrically excited pendulum are considered, and comparison is made between the pendulum and a system which permits ecpape from a symmetric potential well. Two escape or failure scenarios are identified by a bifurcation diagram, and stable periodic orbits are identified using methods of symbolic dynamics and path following techniques.
引用
收藏
页码:581 / 587
页数:7
相关论文
共 50 条
  • [31] PERIODIC-ORBITS CLOSE TO THAT OF THE MOON
    VALSECCHI, GB
    PEROZZI, E
    ROY, AE
    STEVES, BA
    [J]. ASTRONOMY & ASTROPHYSICS, 1993, 271 (01) : 308 - 314
  • [32] A SOLUTION USING PERIODIC-ORBITS
    BLAINE, L
    [J]. FIBONACCI QUARTERLY, 1992, 30 (04): : 371 - 372
  • [33] PERIODIC-ORBITS, ADIABATICITY AND STABILITY
    POLLAK, E
    [J]. CHEMICAL PHYSICS, 1981, 61 (03) : 305 - 316
  • [34] METHOD FOR CONSTRUCTING PERIODIC-ORBITS
    EDELMAN, C
    [J]. ASTRONOMY & ASTROPHYSICS, 1982, 111 (02) : 220 - 223
  • [35] NOOSE BIFURCATION OF PERIODIC-ORBITS
    KENT, P
    ELGIN, J
    [J]. NONLINEARITY, 1991, 4 (04) : 1045 - 1061
  • [36] THE PRESENT STATUS OF PERIODIC-ORBITS
    HADJIDEMETRIOU, JD
    [J]. CELESTIAL MECHANICS, 1981, 23 (03): : 277 - 286
  • [37] LOCALIZED CHAOS ON PERIODIC-ORBITS
    SINGH, R
    MARU, VM
    MOHARIR, PS
    [J]. CURRENT SCIENCE, 1995, 68 (05): : 497 - 500
  • [38] ON THE PERIODIC-ORBITS OF THE CONTOPOULOS HAMILTONIAN
    GRAU, M
    LLIBRE, J
    ROS, RM
    [J]. LECTURE NOTES IN PHYSICS, 1983, 179 : 284 - 286
  • [39] TARGETING UNSTABLE PERIODIC-ORBITS
    CHIZHEVSKY, VN
    GLORIEUX, P
    [J]. PHYSICAL REVIEW E, 1995, 51 (04) : R2701 - R2704
  • [40] ON PERIODIC-ORBITS OF TRAPEZOID MAPS
    DOI, SJ
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1993, 14 (02) : 184 - 199