Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models

被引:0
|
作者
Lichun Wang
Yuan You
Heng Lian
机构
[1] Beijing Jiaotong University,Department of Mathematics
[2] Nanyang Technological University,Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
Statistical Papers | 2015年 / 56卷
关键词
Grouped variables; Lasso penalty; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
In this short paper, we investigate Lasso regularized generalized linear models in the “small n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, large p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}” setting. While similar problems have been well-studied with SCAD penalty, the study of Lasso penalty is mostly restricted to the least squares loss function. Here we show the convergence rate of the Lasso penalized estimator as well as the sparsity property under suitable assumptions. We also extend the results to group Lasso regularized models when the variables are naturally grouped.
引用
下载
收藏
页码:819 / 828
页数:9
相关论文
共 50 条
  • [21] Spline-Lasso in High-Dimensional Linear Regression
    Guo, Jianhua
    Hu, Jianchang
    Jing, Bing-Yi
    Zhang, Zhen
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (513) : 288 - 297
  • [22] Group Lasso Estimation of High-dimensional Covariance Matrices
    Bigot, Jeremie
    Biscay, Rolando J.
    Loubes, Jean-Michel
    Muniz-Alvarez, Lilian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 3187 - 3225
  • [23] ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS
    Huang, Jian
    Ma, Shuangge
    Zhang, Cun-Hui
    STATISTICA SINICA, 2008, 18 (04) : 1603 - 1618
  • [24] Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
    Xiao, Yijun
    Yan, Ting
    Zhang, Huiming
    Zhang, Yuanyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [25] Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
    Yijun Xiao
    Ting Yan
    Huiming Zhang
    Yuanyuan Zhang
    Journal of Inequalities and Applications, 2020
  • [26] The adaptive lasso in high-dimensional sparse heteroscedastic models
    Wagener J.
    Dette H.
    Mathematical Methods of Statistics, 2013, 22 (2) : 137 - 154
  • [27] Shrinkage and LASSO strategies in high-dimensional heteroscedastic models
    Nkurunziza, Severien
    Al-Momani, Marwan
    Lin, Eric Yu Yin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (15) : 4454 - 4470
  • [28] Adaptive Lasso estimators for ultrahigh dimensional generalized linear models
    Wang, Mingqiu
    Wang, Xiuli
    STATISTICS & PROBABILITY LETTERS, 2014, 89 : 41 - 50
  • [29] AIC for the Lasso in generalized linear models
    Ninomiya, Yoshiyuki
    Kawano, Shuichi
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 2537 - 2560
  • [30] Sparsity oracle inequalities for lasso and dantzig selector in high-dimensional nonparametric regression
    1600, Centre for Environment Social and Economic Research, Post Box No. 113, Roorkee, 247667, India (51):