Shrinkage and LASSO strategies in high-dimensional heteroscedastic models

被引:6
|
作者
Nkurunziza, Severien [1 ]
Al-Momani, Marwan [1 ]
Lin, Eric Yu Yin [1 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Asymptotic distribution risk; Heteroscedastic models; HHR estimator; LASSO; Least squares estimator; Linear regression models; Shrinkage strategies; 62J07; 62F30; VARIABLE SELECTION; ABSOLUTE PENALTY; PRETEST;
D O I
10.1080/03610926.2014.921305
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the estimation problem of the parameter vector in the linear regression model with heteroscedastic errors. First, under heteroscedastic errors, we study the performance of shrinkage-type estimators and their performance as compared to theunrestricted and restricted least squares estimators. In order to accommodate the heteroscedastic structure, we generalize an identity which is useful in deriving the risk function. Thanks to the established identity, we prove that shrinkage estimators dominate the unrestricted estimator. Finally, we explore the performance of high-dimensional heteroscedastic regression estimator as compared to classical LASSO and shrinkage estimators.
引用
收藏
页码:4454 / 4470
页数:17
相关论文
共 50 条
  • [1] The adaptive lasso in high-dimensional sparse heteroscedastic models
    Wagener J.
    Dette H.
    [J]. Mathematical Methods of Statistics, 2013, 22 (2) : 137 - 154
  • [2] High-Dimensional LASSO-Based Computational Regression Models: Regularization, Shrinkage, and Selection
    Emmert-Streib, Frank
    Dehmer, Matthias
    [J]. MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (01): : 359 - 383
  • [3] High-dimensional additive hazards models and the Lasso
    Gaiffas, Stephane
    Guilloux, Agathe
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 522 - 546
  • [4] High-dimensional generalized linear models and the lasso
    van de Geer, Sara A.
    [J]. ANNALS OF STATISTICS, 2008, 36 (02): : 614 - 645
  • [5] ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS
    Huang, Jian
    Ma, Shuangge
    Zhang, Cun-Hui
    [J]. STATISTICA SINICA, 2008, 18 (04) : 1603 - 1618
  • [6] Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models
    Lichun Wang
    Yuan You
    Heng Lian
    [J]. Statistical Papers, 2015, 56 : 819 - 828
  • [7] Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models
    Wang, Lichun
    You, Yuan
    Lian, Heng
    [J]. STATISTICAL PAPERS, 2015, 56 (03) : 819 - 828
  • [8] Hi-LASSO: High-Dimensional LASSO
    Kim, Youngsoon
    Hao, Jie
    Mallavarapu, Tejaswini
    Park, Joongyang
    Kang, Mingon
    [J]. IEEE ACCESS, 2019, 7 : 44562 - 44573
  • [9] Shrinkage and Sparse Estimation for High-Dimensional Linear Models
    Asl, M. Noori
    Bevrani, H.
    Belaghi, R. Arabi
    Ahmed, Syed Ejaz
    [J]. PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, VOL 1, 2020, 1001 : 147 - 156
  • [10] Adaptive group Lasso for high-dimensional generalized linear models
    Wang, Mingqiu
    Tian, Guo-Liang
    [J]. STATISTICAL PAPERS, 2019, 60 (05) : 1469 - 1486