Shrinkage and LASSO strategies in high-dimensional heteroscedastic models

被引:6
|
作者
Nkurunziza, Severien [1 ]
Al-Momani, Marwan [1 ]
Lin, Eric Yu Yin [1 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Asymptotic distribution risk; Heteroscedastic models; HHR estimator; LASSO; Least squares estimator; Linear regression models; Shrinkage strategies; 62J07; 62F30; VARIABLE SELECTION; ABSOLUTE PENALTY; PRETEST;
D O I
10.1080/03610926.2014.921305
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the estimation problem of the parameter vector in the linear regression model with heteroscedastic errors. First, under heteroscedastic errors, we study the performance of shrinkage-type estimators and their performance as compared to theunrestricted and restricted least squares estimators. In order to accommodate the heteroscedastic structure, we generalize an identity which is useful in deriving the risk function. Thanks to the established identity, we prove that shrinkage estimators dominate the unrestricted estimator. Finally, we explore the performance of high-dimensional heteroscedastic regression estimator as compared to classical LASSO and shrinkage estimators.
引用
收藏
页码:4454 / 4470
页数:17
相关论文
共 50 条
  • [31] High-dimensional posterior consistency of the Bayesian lasso
    Dasgupta, Shibasish
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (22) : 6700 - 6708
  • [32] High-dimensional graphs and variable selection with the Lasso
    Meinshausen, Nicolai
    Buehlmann, Peter
    [J]. ANNALS OF STATISTICS, 2006, 34 (03): : 1436 - 1462
  • [33] Optimally Weighted PCA for High-Dimensional Heteroscedastic Data
    Hong, David
    Yang, Fan
    Fessler, Jeffrey A.
    Balzano, Laura
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2023, 5 (01): : 222 - 250
  • [34] Asymptotic performance of PCA for high-dimensional heteroscedastic data
    Hong, David
    Balzano, Laura
    Fessler, Jeffrey A.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 167 : 435 - 452
  • [35] The robust desparsified lasso and the focused information criterion for high-dimensional generalized linear models
    Pandhare, S. C.
    Ramanathan, T. V.
    [J]. STATISTICS, 2023, 57 (01) : 1 - 25
  • [36] Hierarchical Shrinkage Priors and Model Fitting for High-dimensional Generalized Linear Models
    Yi, Nengjun
    Ma, Shuangge
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2012, 11 (06)
  • [37] Bayesian shrinkage models for integration and analysis of multiplatform high-dimensional genomics data
    Xue, Hao
    Chakraborty, Sounak
    Dey, Tanujit
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (02)
  • [38] Change-point inference for high-dimensional heteroscedastic data
    Wu, Teng
    Volgushev, Stanislav
    Shao, Xiaofeng
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02): : 3893 - 3941
  • [39] A study on tuning parameter selection for the high-dimensional lasso
    Homrighausen, Darren
    McDonald, Daniel J.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (15) : 2865 - 2892
  • [40] Minimum Distance Lasso for robust high-dimensional regression
    Lozano, Aurelie C.
    Meinshausen, Nicolai
    Yang, Eunho
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1296 - 1340