Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models

被引:0
|
作者
Lichun Wang
Yuan You
Heng Lian
机构
[1] Beijing Jiaotong University,Department of Mathematics
[2] Nanyang Technological University,Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
Statistical Papers | 2015年 / 56卷
关键词
Grouped variables; Lasso penalty; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
In this short paper, we investigate Lasso regularized generalized linear models in the “small n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, large p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}” setting. While similar problems have been well-studied with SCAD penalty, the study of Lasso penalty is mostly restricted to the least squares loss function. Here we show the convergence rate of the Lasso penalized estimator as well as the sparsity property under suitable assumptions. We also extend the results to group Lasso regularized models when the variables are naturally grouped.
引用
下载
收藏
页码:819 / 828
页数:9
相关论文
共 50 条
  • [31] High-dimensional linear discriminant analysis with moderately clipped LASSO
    Chang, Jaeho
    Moon, Haeseong
    Kwon, Sunghoon
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2021, 28 (01) : 21 - 37
  • [32] The joint lasso: high-dimensional regression for group structured data
    Dondelinger, Frank
    Mukherjee, Sach
    BIOSTATISTICS, 2020, 21 (02) : 219 - 235
  • [33] Adaptive Lasso in high-dimensional settings
    Lin, Zhengyan
    Xiang, Yanbiao
    Zhang, Caiya
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (06) : 683 - 696
  • [34] Localized Lasso for High-Dimensional Regression
    Yamada, Makoto
    Takeuchi, Koh
    Iwata, Tomoharu
    Shawe-Taylor, John
    Kaski, Samuel
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 325 - 333
  • [35] Asymptotic properties of Lasso plus mLS and Lasso plus Ridge in sparse high-dimensional linear regression
    Liu, Hanzhong
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 3124 - 3169
  • [36] Oracle Inequalities for a Group Lasso Procedure Applied to Generalized Linear Models in High Dimension
    Blazere, Melanie
    Loubes, Jean-Michel
    Gamboa, Fabrice
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (04) : 2303 - 2318
  • [37] High-dimensional generalized median adaptive lasso with application to omics data
    Liu, Yahang
    Gao, Qian
    Wei, Kecheng
    Huang, Chen
    Wang, Ce
    Yu, Yongfu
    Qin, Guoyou
    Wang, Tong
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [38] Independently Interpretable Lasso for Generalized Linear Models
    Takada, Masaaki
    Suzuki, Taiji
    Fujisawa, Hironori
    NEURAL COMPUTATION, 2020, 32 (06) : 1168 - 1221
  • [39] Research Based on High-Dimensional Fused Lasso Partially Linear Model
    Feng, Aifen
    Fan, Jingya
    Jin, Zhengfen
    Zhao, Mengmeng
    Chang, Xiaogai
    MATHEMATICS, 2023, 11 (12)
  • [40] Post Lasso Stability Selection for High Dimensional Linear Models
    Gauraha, Niharika
    Pavlenko, Tatyana
    Parui, Swapan K.
    ICPRAM: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2017, : 638 - 646