In this short paper, we investigate Lasso regularized generalized linear models in the “small n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n$$\end{document}, large p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p$$\end{document}” setting. While similar problems have been well-studied with SCAD penalty, the study of Lasso penalty is mostly restricted to the least squares loss function. Here we show the convergence rate of the Lasso penalized estimator as well as the sparsity property under suitable assumptions. We also extend the results to group Lasso regularized models when the variables are naturally grouped.
机构:
Siena Coll, Business Analyt & Actuarial Sci, Loudonville, NY USASiena Coll, Business Analyt & Actuarial Sci, Loudonville, NY USA
Kim, Sangahn
Turkoz, Mehmet
论文数: 0引用数: 0
h-index: 0
机构:
William Paterson Univ, Dept Management Mkt & Profess Sales, Wayne, NJ USASiena Coll, Business Analyt & Actuarial Sci, Loudonville, NY USA
Turkoz, Mehmet
Jeong, Myong K.
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Ind & Syst Engn, 96 Frelinghuysen Rd, Piscataway, NJ 08854 USASiena Coll, Business Analyt & Actuarial Sci, Loudonville, NY USA
Jeong, Myong K.
Elsayed, Elsayed A.
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Ind & Syst Engn, 96 Frelinghuysen Rd, Piscataway, NJ 08854 USASiena Coll, Business Analyt & Actuarial Sci, Loudonville, NY USA