Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models

被引:0
|
作者
Lichun Wang
Yuan You
Heng Lian
机构
[1] Beijing Jiaotong University,Department of Mathematics
[2] Nanyang Technological University,Division of Mathematical Sciences, School of Physical and Mathematical Sciences
来源
Statistical Papers | 2015年 / 56卷
关键词
Grouped variables; Lasso penalty; Variable selection;
D O I
暂无
中图分类号
学科分类号
摘要
In this short paper, we investigate Lasso regularized generalized linear models in the “small n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}, large p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}” setting. While similar problems have been well-studied with SCAD penalty, the study of Lasso penalty is mostly restricted to the least squares loss function. Here we show the convergence rate of the Lasso penalized estimator as well as the sparsity property under suitable assumptions. We also extend the results to group Lasso regularized models when the variables are naturally grouped.
引用
下载
收藏
页码:819 / 828
页数:9
相关论文
共 50 条
  • [41] The Generalized Group Lasso
    Alaiz, Carlos M.
    Dorronsoro, Jose R.
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [42] Influence Diagnostics for High-Dimensional Lasso Regression
    Rajaratnam, Bala
    Roberts, Steven
    Sparks, Doug
    Yu, Honglin
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (04) : 877 - 890
  • [43] Lasso inference for high-dimensional time series
    Adamek, Robert
    Smeekes, Stephan
    Wilms, Ines
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1114 - 1143
  • [44] High-dimensional graphs and variable selection with the Lasso
    Meinshausen, Nicolai
    Buehlmann, Peter
    ANNALS OF STATISTICS, 2006, 34 (03): : 1436 - 1462
  • [45] High-dimensional posterior consistency of the Bayesian lasso
    Dasgupta, Shibasish
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (22) : 6700 - 6708
  • [46] Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
    Jan Klosa
    Noah Simon
    Pål Olof Westermark
    Volkmar Liebscher
    Dörte Wittenburg
    BMC Bioinformatics, 21
  • [47] An adaptive group LASSO approach for domain selection in functional generalized linear models
    Sun, Yifan
    Wang, Qihua
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 219 : 13 - 32
  • [48] Monitoring of group-structured high-dimensional processes via sparse group LASSO
    Kim, Sangahn
    Turkoz, Mehmet
    Jeong, Myong K.
    Elsayed, Elsayed A.
    ANNALS OF OPERATIONS RESEARCH, 2024, 340 (2-3) : 891 - 911
  • [49] Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
    Klosa, Jan
    Simon, Noah
    Westermark, Pal Olof
    Liebscher, Volkmar
    Wittenburg, Doerte
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [50] Generalized fused Lasso for grouped data in generalized linear models
    Ohishi, Mineaki
    STATISTICS AND COMPUTING, 2024, 34 (04)