Hilbert genus fields of biquadratic fields

被引:0
|
作者
Yi Ouyang
Zhe Zhang
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
来源
Science China Mathematics | 2014年 / 57卷
关键词
class group; Hilbert symbol; Hilbert genus field; 11R65; 11R37;
D O I
暂无
中图分类号
学科分类号
摘要
The Hilbert genus field of the real biquadratic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document} is described by Yue (2010) and Bae and Yue (2011) explicitly in the case δ = 2 or p with p ≡ 1 mod 4 a prime and d a squarefree positive integer. In this article, we describe explicitly the Hilbert genus field of the imaginary biquadratic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document}, where δ = −1,−2 or −p with p ≡ 3mod 4 a prime and d any squarefree integer. This completes the explicit construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield of odd class number.
引用
收藏
页码:2111 / 2122
页数:11
相关论文
共 50 条
  • [31] GENERALIZED HILBERT FIELDS
    SZYMICZEK, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1981, 329 : 58 - 65
  • [32] Genus fields of congruence function fields
    Maldonado-Ramirez, Myriam
    Rzedawski-Calderon, Martha
    Villa-Salvador, Gabriel
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 44 : 56 - 75
  • [33] The genus fields of Kummer function fields
    Peng, GH
    JOURNAL OF NUMBER THEORY, 2003, 98 (02) : 221 - 227
  • [34] NOTE ON HILBERT CLASS FIELDS OF ALGEBRAIC NUMBER FIELDS
    GYORY, K
    LEAHEY, W
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 29 (3-4): : 251 - 254
  • [35] Bounds on the Pythagoras number and indecomposables in biquadratic fields
    Tinkova, Magdalena
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025,
  • [36] On the Polya Group of Some Imaginary Biquadratic Fields
    Taous, Mohammed
    NON-ASSOCIATIVE AND NON-COMMUTATIVE ALGEBRA AND OPERATOR THEORY, NANCAOT, 2016, 160 : 175 - 182
  • [37] Polya group in some real biquadratic fields
    Maarefparvar, Abbas
    JOURNAL OF NUMBER THEORY, 2021, 228 : 1 - 7
  • [38] CLASS GROUPS OF LARGE RANKS IN BIQUADRATIC FIELDS
    Ram, Mahesh Kumar
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (02) : 429 - 436
  • [39] Sums of three integral squares in biquadratic fields
    Zhang, Bin
    Ji, Chun-Gang
    JOURNAL OF NUMBER THEORY, 2014, 138 : 37 - 47
  • [40] ON FUNDAMENTAL UNITS OF CERTAIN RELATIVELY BIQUADRATIC FIELDS
    LAKEIN, RB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 265 - &