Bounds on the Pythagoras number and indecomposables in biquadratic fields

被引:0
|
作者
Tinkova, Magdalena [1 ,2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague, Czech Republic
[2] Czech Tech Univ, Fac Informat Technol, Thakurova 9, Prague, Czech Republic
[3] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, Graz, Austria
关键词
Pythagoras number; biquadratic fields; additively indecomposable integers; UNIVERSAL QUADRATIC-FORMS; TOTALLY POSITIVE NUMBERS; INTEGERS; ELEMENTS; ORDERS; RANK;
D O I
10.1017/S0013091525000112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for all real biquadratic fields not containing $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ and $\sqrt{13}$, the Pythagoras number of the ring of algebraic integers is at least 6. We also provide an upper bound on the norm and the minimal (codifferent) trace of additively indecomposable integers in some families of these fields.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Arithmetic of cubic number fields: Jacobi-Perron, Pythagoras, and indecomposables
    Kala, Vitezslav
    Sgallova, Ester
    Tinkova, Magdalena
    JOURNAL OF NUMBER THEORY, 2025, 273 : 37 - 95
  • [2] Pythagoras numbers of orders in biquadratic fields
    Krasensky, Jakub
    Raska, Martin
    Sgallova, Ester
    EXPOSITIONES MATHEMATICAE, 2022, 40 (04) : 1181 - 1228
  • [3] Universal quadratic forms and indecomposables over biquadratic fields
    Cech, Martin
    Lachman, Dominik
    Svoboda, Josef
    Tinkova, Magdalena
    Zemkova, Kristysma
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 540 - 555
  • [4] Lower bounds for Pythagoras numbers of function fields
    Grimm, David
    COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (02) : 365 - 375
  • [5] On the Pythagoras number of function fields of curves over number fields
    Pop, Florian
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (02) : 561 - 574
  • [6] On the Pythagoras number of function fields of curves over number fields
    Florian Pop
    Israel Journal of Mathematics, 2023, 257 : 561 - 574
  • [7] On the Pythagoras number of the simplest cubic fields
    Tinkova, Magdalena
    ACTA ARITHMETICA, 2023, 208 (04) : 325 - 354
  • [8] Tame kernels for biquadratic number fields
    Yue, Q
    K-THEORY, 2005, 35 (1-2): : 69 - 91
  • [9] REMARKS ON THE PYTHAGORAS AND HASSE NUMBER OF REAL FIELDS
    PRESTEL, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 303 : 284 - 294
  • [10] ON BOUNDS OF THE PYTHAGORAS NUMBER OF THE SUM OF SQUARE MAGNITUDES OF LAURENT POLYNOMIALS
    Thanh Hieu Le
    Van Barel, Marc
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2016, 6 (02): : 91 - 102