Arithmetic of cubic number fields: Jacobi-Perron, Pythagoras, and indecomposables

被引:1
|
作者
Kala, Vitezslav [1 ]
Sgallova, Ester [1 ]
Tinkova, Magdalena [1 ,2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 8, Czech Republic
[2] Czech Tech Univ, Fac Informat Technol, Thakurova 9, Prague 6, Czech Republic
[3] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, A-8010 Graz, Austria
关键词
Jacobi-Perron algorithm; Multidimensional continued fraction; Totally real number field; Cubic number field; UNIVERSAL QUADRATIC-FORMS; TOTALLY POSITIVE NUMBERS; CONTINUED-FRACTION; FAMILIES; ALGORITHMS; ORDERS; DECOMPOSITION; PERIODICITY; UNITS;
D O I
10.1016/j.jnt.2024.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a new connection between multidimensional continued fractions, such as Jacobi-Perron algorithm, and additively indecomposable integers in totally real cubic number fields. First, we find the indecomposables of all signatures in Ennola's family of cubic fields, and use them to determine the Pythagoras numbers. Second, we compute a number of periodic JPA expansions, also in Shanks' family of simplest cubic fields. Finally, we compare these expansions with indecomposables to formulate our conclusions.<br /> (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:37 / 95
页数:59
相关论文
共 50 条