Bounds on the Pythagoras number and indecomposables in biquadratic fields

被引:0
|
作者
Tinkova, Magdalena [1 ,2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague, Czech Republic
[2] Czech Tech Univ, Fac Informat Technol, Thakurova 9, Prague, Czech Republic
[3] Graz Univ Technol, Inst Anal & Number Theory, Kopernikusgasse 24-2, Graz, Austria
关键词
Pythagoras number; biquadratic fields; additively indecomposable integers; UNIVERSAL QUADRATIC-FORMS; TOTALLY POSITIVE NUMBERS; INTEGERS; ELEMENTS; ORDERS; RANK;
D O I
10.1017/S0013091525000112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for all real biquadratic fields not containing $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$ and $\sqrt{13}$, the Pythagoras number of the ring of algebraic integers is at least 6. We also provide an upper bound on the norm and the minimal (codifferent) trace of additively indecomposable integers in some families of these fields.
引用
收藏
页数:26
相关论文
共 50 条