Universal quadratic forms and indecomposables over biquadratic fields

被引:9
|
作者
Cech, Martin [1 ]
Lachman, Dominik [1 ]
Svoboda, Josef [1 ]
Tinkova, Magdalena [1 ]
Zemkova, Kristysma [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, CR-18600 Prague 8, Czech Republic
关键词
biquadratic number field; indecomposable integer; universal quadratic form; INTEGERS;
D O I
10.1002/mana.201800109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to study (additively) indecomposable algebraic integers O-K of biquadratic number fields K and universal totally positive quadratic forms with coefficients in O-K. There are given sufficient conditions for an indecomposable element of a quadratic subfield to remain indecomposable in the biquadratic number field K. Furthermore, estimates are proven which enable algorithmization of the method of escalation over K. These are used to prove, over two particular biquadratic number fields Q(root 2, root 3) and Q(root 6, root 19), a lower bound on the number of variables of a universal quadratic forms.
引用
收藏
页码:540 / 555
页数:16
相关论文
共 50 条
  • [1] There are no universal ternary quadratic forms over biquadratic fields
    Krasensky, Jakub
    Tinkova, Magdalena
    Zemkova, Kristyna
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (03) : 861 - 912
  • [2] Universal quadratic forms over multiquadratic fields
    Kala, Vitezslav
    Svoboda, Josef
    [J]. RAMANUJAN JOURNAL, 2019, 48 (01): : 151 - 157
  • [3] Universal quadratic forms over multiquadratic fields
    Vítězslav Kala
    Josef Svoboda
    [J]. The Ramanujan Journal, 2019, 48 : 151 - 157
  • [4] ON THE RANK OF UNIVERSAL QUADRATIC FORMS OVER REAL QUADRATIC FIELDS
    Blomer, Valentin
    Kala, Vitezslav
    [J]. DOCUMENTA MATHEMATICA, 2018, 23 : 15 - 34
  • [5] ON INDEFINITE AND POTENTIALLY UNIVERSAL QUADRATIC FORMS OVER NUMBER FIELDS
    Xu, Fei
    Zhang, Yang
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (04) : 2459 - 2480
  • [6] THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS
    Gil-Munoz, Daniel
    Tinkova, Magdalena
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023,
  • [7] Universal octonary diagonal forms over some real quadratic fields
    Kim, BM
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) : 410 - 414
  • [8] On n-universal quadratic forms over dyadic local fields
    Zilong He
    Yong Hu
    [J]. Science China Mathematics, 2024, 67 (07) : 1481 - 1506
  • [9] On n-universal quadratic forms over dyadic local fields
    He, Zilong
    Hu, Yong
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (07) : 1481 - 1506
  • [10] n-UNIVERSAL QUADRATIC FORMS, QUADRATIC IDEALS AND ELLIPTIC CURVES OVER FINITE FIELDS
    Tekcan, Ahmet
    Ozkoc, Arzu
    [J]. MATHEMATICAL REPORTS, 2011, 13 (02): : 205 - 216