Universal octonary diagonal forms over some real quadratic fields

被引:22
|
作者
Kim, BM [1 ]
机构
[1] Kangnung Natl Univ, Coll Nat Sci, Dept Math, Kangwon Do 210702, South Korea
关键词
universal quadratic forms; real quadratic fields;
D O I
10.1007/s000140050133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we will prove there are infinitely many integers n such that n(2) - 1 is square-free and Q(root n(2) - 1) admits universal octonary diagonal quadratic forms.
引用
收藏
页码:410 / 414
页数:5
相关论文
共 50 条
  • [1] ON THE RANK OF UNIVERSAL QUADRATIC FORMS OVER REAL QUADRATIC FIELDS
    Blomer, Valentin
    Kala, Vitezslav
    [J]. DOCUMENTA MATHEMATICA, 2018, 23 : 15 - 34
  • [2] Finiteness of real quadratic fields which admit positive integral diagonal septanary universal forms
    Byeong Moon Kim
    [J]. manuscripta mathematica, 1999, 99 : 181 - 184
  • [3] Finiteness of real quadratic fields which admit positive integral diagonal septanary universal forms
    Kim, BM
    [J]. MANUSCRIPTA MATHEMATICA, 1999, 99 (02) : 181 - 184
  • [4] Universal quadratic forms over multiquadratic fields
    Kala, Vitezslav
    Svoboda, Josef
    [J]. RAMANUJAN JOURNAL, 2019, 48 (01): : 151 - 157
  • [5] Universal quadratic forms over multiquadratic fields
    Vítězslav Kala
    Josef Svoboda
    [J]. The Ramanujan Journal, 2019, 48 : 151 - 157
  • [6] REPRESENTATION NUMBER FORMULAE FOR SOME OCTONARY QUADRATIC FORMS
    Kokluce, Bulent
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2014, 63 (02): : 135 - 145
  • [7] Representations of an Integer by Some Quaternary and Octonary Quadratic Forms
    Ramakrishnan, B.
    Sahu, Brundaban
    Singh, Anup Kumar
    [J]. GEOMETRY, ALGEBRA, NUMBER THEORY, AND THEIR INFORMATION TECHNOLOGY APPLICATIONS, 2018, 251 : 383 - 409
  • [8] Universal quadratic forms and indecomposables over biquadratic fields
    Cech, Martin
    Lachman, Dominik
    Svoboda, Josef
    Tinkova, Magdalena
    Zemkova, Kristysma
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 540 - 555
  • [9] There are no universal ternary quadratic forms over biquadratic fields
    Krasensky, Jakub
    Tinkova, Magdalena
    Zemkova, Kristyna
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (03) : 861 - 912
  • [10] UNIVERSAL QUADRATIC FORMS AND ELEMENTS OF SMALL NORM IN REAL QUADRATIC FIELDS
    Kala, Vitezslav
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (01) : 7 - 14