Universal quadratic forms over multiquadratic fields

被引:0
|
作者
Vítězslav Kala
Josef Svoboda
机构
[1] Charles University,Department of Algebra, Faculty of Mathematics and Physics
[2] University of Göttingen,Mathematisches Institut
来源
The Ramanujan Journal | 2019年 / 48卷
关键词
Universal quadratic form; Multiquadratic number field; Additively indecomposable integer; 11E12; 11R20;
D O I
暂无
中图分类号
学科分类号
摘要
For all positive integers k and N, we prove that there are infinitely many totally real multiquadratic fields K of degree 2k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^k$$\end{document} over Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document} such that each universal quadratic form over K has at least N variables.
引用
收藏
页码:151 / 157
页数:6
相关论文
共 50 条
  • [1] Universal quadratic forms over multiquadratic fields
    Kala, Vitezslav
    Svoboda, Josef
    [J]. RAMANUJAN JOURNAL, 2019, 48 (01): : 151 - 157
  • [2] ON THE RANK OF UNIVERSAL QUADRATIC FORMS OVER REAL QUADRATIC FIELDS
    Blomer, Valentin
    Kala, Vitezslav
    [J]. DOCUMENTA MATHEMATICA, 2018, 23 : 15 - 34
  • [3] Universal quadratic forms and indecomposables over biquadratic fields
    Cech, Martin
    Lachman, Dominik
    Svoboda, Josef
    Tinkova, Magdalena
    Zemkova, Kristysma
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (03) : 540 - 555
  • [4] There are no universal ternary quadratic forms over biquadratic fields
    Krasensky, Jakub
    Tinkova, Magdalena
    Zemkova, Kristyna
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (03) : 861 - 912
  • [5] ON INDEFINITE AND POTENTIALLY UNIVERSAL QUADRATIC FORMS OVER NUMBER FIELDS
    Xu, Fei
    Zhang, Yang
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (04) : 2459 - 2480
  • [6] THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS
    Gil-Munoz, Daniel
    Tinkova, Magdalena
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023,
  • [7] Universal octonary diagonal forms over some real quadratic fields
    Kim, BM
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) : 410 - 414
  • [8] On n-universal quadratic forms over dyadic local fields
    Zilong He
    Yong Hu
    [J]. Science China Mathematics, 2024, 67 (07) : 1481 - 1506
  • [9] On n-universal quadratic forms over dyadic local fields
    He, Zilong
    Hu, Yong
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (07) : 1481 - 1506
  • [10] n-UNIVERSAL QUADRATIC FORMS, QUADRATIC IDEALS AND ELLIPTIC CURVES OVER FINITE FIELDS
    Tekcan, Ahmet
    Ozkoc, Arzu
    [J]. MATHEMATICAL REPORTS, 2011, 13 (02): : 205 - 216