On n-universal quadratic forms over dyadic local fields

被引:0
|
作者
He, Zilong [1 ]
Hu, Yong [2 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
integral quadratic forms; n-universal quadratic forms; dyadic fields; 290-theorem; LATTICES; NUMBER;
D O I
10.1007/s11425-022-2133-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 2 be an integer. We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be n-universal by using invariants from Beli's theory of bases of norm generators. Also, we provide a minimal set for testing n-universal quadratic forms over dyadic local fields, as an analogue of Bhargava and Hanke's 290-theorem (or Conway and Schneeberger's 15-theorem) on universal quadratic forms with integer coefficients.
引用
收藏
页码:1481 / 1506
页数:26
相关论文
共 50 条