On k-universal quadratic lattices over unramified dyadic local fields

被引:2
|
作者
He, Zilong [1 ]
Hu, Yong [2 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci & Technol, Dongguan 523808, Peoples R China
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
INTEGRAL-REPRESENTATIONS; FORMS; INDEFINITE; INTEGERS;
D O I
10.1016/j.jpaa.2023.107334
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a positive integer and let F be a finite unramified extension of Q2 with ring of integers OF. An integral (resp. classic) quadratic form over OF is called k-universal (resp. classic k-universal) if it represents all integral (resp. classic) quadratic forms of dimension k. In this paper, we provide a complete classification of k-universal and classic k-universal quadratic forms over OF. The results are stated in terms of the fundamental invariants associated to Jordan splittings of quadratic lattices. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] On indefinite k-universal integral quadratic forms over number fields
    He, Zilong
    Hu, Yong
    Xu, Fei
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (01)
  • [2] On indefinite k-universal integral quadratic forms over number fields
    Zilong He
    Yong Hu
    Fei Xu
    [J]. Mathematische Zeitschrift, 2023, 304
  • [3] On n-universal quadratic forms over dyadic local fields
    Zilong He
    Yong Hu
    [J]. Science China Mathematics, 2024, 67 (07) : 1481 - 1506
  • [4] On n-universal quadratic forms over dyadic local fields
    He, Zilong
    Hu, Yong
    [J]. SCIENCE CHINA-MATHEMATICS, 2024, 67 (07) : 1481 - 1506
  • [5] On classic n-universal quadratic forms over dyadic local fields
    He, Zilong
    [J]. MANUSCRIPTA MATHEMATICA, 2024, 174 (1-2) : 559 - 595
  • [6] On classic n-universal quadratic forms over dyadic local fields
    Zilong He
    [J]. manuscripta mathematica, 2024, 174 : 559 - 595
  • [7] Representations of integral quadratic forms over dyadic local fields
    Beli, Constantin N.
    [J]. ELECTRONIC RESEARCH ANNOUNCEMENTS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 12 : 100 - 112
  • [8] Constructing unramified extensions over quadratic fields
    Aoki, Misato
    Kida, Masanari
    [J]. INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (01): : 55 - 68
  • [9] Even universal binary Hermitian lattices over imaginary quadratic fields
    Kim, Byeong Moon
    Kim, Ji Young
    Park, Poo-Sung
    [J]. FORUM MATHEMATICUM, 2011, 23 (06) : 1189 - 1201
  • [10] THE FIFTEEN THEOREM FOR UNIVERSAL HERMITIAN LATTICES OVER IMAGINARY QUADRATIC FIELDS
    Kim, Byeong Moon
    Kim, Ji Young
    Park, Poo-Sung
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (270) : 1123 - 1144