On classic n-universal quadratic forms over dyadic local fields

被引:0
|
作者
Zilong He
机构
[1] Dongguan University of Technology,School of Computer Science and Technology
来源
manuscripta mathematica | 2024年 / 174卷
关键词
11E08; 11E20; 11E95;
D O I
暂无
中图分类号
学科分类号
摘要
Let n be an integer and n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n\ge 2 $$\end{document}. A classic integral quadratic form over local fields is called classic n-universal if it represents all n-ary classic integral quadratic forms. We determine the equivalent conditions and minimal testing sets for classic n-universal quadratic forms over dyadic local fields.
引用
收藏
页码:559 / 595
页数:36
相关论文
共 50 条