Hilbert genus fields of biquadratic fields

被引:0
|
作者
Yi Ouyang
Zhe Zhang
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
来源
Science China Mathematics | 2014年 / 57卷
关键词
class group; Hilbert symbol; Hilbert genus field; 11R65; 11R37;
D O I
暂无
中图分类号
学科分类号
摘要
The Hilbert genus field of the real biquadratic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document} is described by Yue (2010) and Bae and Yue (2011) explicitly in the case δ = 2 or p with p ≡ 1 mod 4 a prime and d a squarefree positive integer. In this article, we describe explicitly the Hilbert genus field of the imaginary biquadratic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document}, where δ = −1,−2 or −p with p ≡ 3mod 4 a prime and d any squarefree integer. This completes the explicit construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield of odd class number.
引用
收藏
页码:2111 / 2122
页数:11
相关论文
共 50 条
  • [21] Construction of Class Fields Over Imaginary Biquadratic Fields
    Koo, Ja Kyung
    Yoon, Dong Sung
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (02) : 413 - 434
  • [22] ON THE HILBERT 2-CLASS FIELD TOWER OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS
    Chems-Eddin, Mohamed Mahmoud
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Jerrari, Idriss
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 269 - 281
  • [23] On the Hilbert 2-Class Field Tower of Some Imaginary Biquadratic Number Fields
    Mohamed Mahmoud Chems-Eddin
    Abdelmalek Azizi
    Abdelkader Zekhnini
    Idriss Jerrari
    Czechoslovak Mathematical Journal, 2021, 71 : 269 - 281
  • [24] ON ARITHMETIC GENUS OF HILBERT MODULAR VARIETIES ON CYCLIC NUMBER FIELDS
    冯克勤
    Science China Mathematics, 1984, (06) : 576 - 584
  • [25] ON ARITHMETIC GENUS OF HILBERT MODULAR VARIETIES ON CYCLIC NUMBER FIELDS
    冯克勤
    ScienceinChina,SerA., 1984, Ser.A.1984 (06) : 576 - 584
  • [26] Tame kernels for biquadratic number fields
    Yue, Q
    K-THEORY, 2005, 35 (1-2): : 69 - 91
  • [27] Some questions on biquadratic Polya fields
    Tougma, Charles Wend-Waoga
    JOURNAL OF NUMBER THEORY, 2021, 229 : 386 - 398
  • [28] Pythagoras numbers of orders in biquadratic fields
    Krasensky, Jakub
    Raska, Martin
    Sgallova, Ester
    EXPOSITIONES MATHEMATICAE, 2022, 40 (04) : 1181 - 1228
  • [29] On a family of real bicyclic biquadratic fields
    Katayama, S
    Levesque, C
    Nakahara, T
    NUMBER THEORY, 2004, 36 : 177 - 187
  • [30] ON ARITHMETIC GENUS OF HILBERT MODULAR VARIETIES ON CYCLIC NUMBER-FIELDS
    FENG, KQ
    SCIENTIA SINICA SERIES A-MATHEMATICAL PHYSICAL ASTRONOMICAL & TECHNICAL SCIENCES, 1984, 27 (06): : 576 - 584