On the Hilbert 2-Class Field Tower of Some Imaginary Biquadratic Number Fields

被引:0
|
作者
Mohamed Mahmoud Chems-Eddin
Abdelmalek Azizi
Abdelkader Zekhnini
Idriss Jerrari
机构
[1] Mohammed First University,Mathematics Department, Sciences Faculty
[2] Mohammed First University,Mathematics Department, Pluridisciplinary Faculty
[3] Mohammed First University,Mathematics Department, Sciences Faculty
来源
关键词
2-class group; imaginary biquadratic number field; capitulation; Hilbert 2-class field; 11R11; 11R27; 11R29; 11R37;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{k} = \mathbb{Q} \left( {\sqrt 2 ,\; \sqrt d } \right)$$\end{document} be an imaginary bicyclic biquadratic number field, where d is an odd negative square-free integer and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{k}_2^{\left( 2 \right)}$$\end{document} its second Hilbert 2-class field. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = {\rm{Gal}}\left( {\mathbb{k}_2^{\left( 2 \right)}/ \mathbb{k}} \right)$$\end{document} the Galois group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{k}_2^{\left( 2 \right)}/ \mathbb{k}}$$\end{document}. The purpose of this note is to investigate the Hilbert 2-class field tower of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{k}$$\end{document} and then deduce the structure of G.
引用
收藏
页码:269 / 281
页数:12
相关论文
共 50 条
  • [1] ON THE HILBERT 2-CLASS FIELD TOWER OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS
    Chems-Eddin, Mohamed Mahmoud
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Jerrari, Idriss
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 269 - 281
  • [2] On the 2-class field tower of some imaginary biquadratic number fields
    Benjamin, E
    RAMANUJAN JOURNAL, 2006, 11 (01): : 103 - 110
  • [3] On the 2-class field tower of some imaginary biquadratic number fields
    Elliot Benjamin
    The Ramanujan Journal, 2006, 11 : 103 - 110
  • [4] On the rank of the 2-class group of some imaginary biquadratic number fields
    A. Mouhib
    S. Rouas
    Acta Mathematica Hungarica, 2022, 167 : 295 - 308
  • [5] ON THE RANK OF THE 2-CLASS GROUP OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS
    Mouhib, A.
    Rouas, S.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) : 295 - 308
  • [6] Correction to: On the rank of the 2-class group of some imaginary biquadratic number fields
    A. Mouhib
    S. Rouas
    Acta Mathematica Hungarica, 2024, 172 : 287 - 287
  • [7] Infinite Hilbert 2-class field tower of quadratic number fields
    Mouhib, A.
    ACTA ARITHMETICA, 2010, 145 (03) : 267 - 272
  • [8] A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower
    A. Mouhib
    The Ramanujan Journal, 2016, 40 : 405 - 412
  • [9] On the Hilbert 2-class field of some quadratic number fields
    Azizi, Abdelmalek
    Rezzougui, Mohammed
    Taous, Mohammed
    Zekhnini, Abdelkader
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (04) : 807 - 824
  • [10] A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower
    Mouhib, A.
    RAMANUJAN JOURNAL, 2016, 40 (02): : 405 - 412