On the rank of the 2-class group of some imaginary biquadratic number fields

被引:0
|
作者
A. Mouhib
S. Rouas
机构
[1] Université de Fez,Faculté Polydisciplinaire de Taza
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
2-group rank; 2-class group; imaginary biquadratic number field; Iwasawa module; 11R11; 11R16; 11R18; 11R27; 11R29;
D O I
暂无
中图分类号
学科分类号
摘要
For an imaginary biquadratic number field L=Q(i,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L = \mathbb{Q}(i,\sqrt{d})$$\end{document}, where d is an odd square-free integer, let L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty$$\end{document} be the cyclotomic Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_2$$\end{document}-extension of L. For any integer n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geq 0$$\end{document}, we denote by Ln the nth layer of L∞/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty}/L$$\end{document}. We study the rank of the 2-primary part of the class group of Ln and then we draw the list of all number fields L where the Galois group of the maximal unramified pro-2-extension of L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty$$\end{document} is metacyclic.
引用
收藏
页码:295 / 308
页数:13
相关论文
共 50 条
  • [1] ON THE RANK OF THE 2-CLASS GROUP OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS
    Mouhib, A.
    Rouas, S.
    [J]. ACTA MATHEMATICA HUNGARICA, 2022, 167 (01) : 295 - 308
  • [2] Correction to: On the rank of the 2-class group of some imaginary biquadratic number fields
    A. Mouhib
    S. Rouas
    [J]. Acta Mathematica Hungarica, 2024, 172 : 287 - 287
  • [3] On the rank of the 2-class group of some imaginary triquadratic number fields
    Azizi, Abdelmalek
    Chems-Eddin, Mohamed Mahmoud
    Zekhnini, Abdelkader
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) : 1751 - 1769
  • [4] On the rank of the 2-class group of some imaginary triquadratic number fields
    Abdelmalek Azizi
    Mohamed Mahmoud Chems-Eddin
    Abdelkader Zekhnini
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1751 - 1769
  • [5] On the rank of the 2-class group of some imaginary biquadratic number fields (vol 167, pg 295, 2022)
    Mouhib, A.
    Rouas, S.
    [J]. ACTA MATHEMATICA HUNGARICA, 2024, 172 (01) : 287 - 287
  • [6] On the 2-class field tower of some imaginary biquadratic number fields
    Benjamin, E
    [J]. RAMANUJAN JOURNAL, 2006, 11 (01): : 103 - 110
  • [7] On the 2-class field tower of some imaginary biquadratic number fields
    Elliot Benjamin
    [J]. The Ramanujan Journal, 2006, 11 : 103 - 110
  • [8] On the Hilbert 2-Class Field Tower of Some Imaginary Biquadratic Number Fields
    Mohamed Mahmoud Chems-Eddin
    Abdelmalek Azizi
    Abdelkader Zekhnini
    Idriss Jerrari
    [J]. Czechoslovak Mathematical Journal, 2021, 71 : 269 - 281
  • [9] ON THE HILBERT 2-CLASS FIELD TOWER OF SOME IMAGINARY BIQUADRATIC NUMBER FIELDS
    Chems-Eddin, Mohamed Mahmoud
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Jerrari, Idriss
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 269 - 281
  • [10] IMAGINARY BICYCLIC BIQUADRATIC FIELDS WITH ELEMENTARY 2-CLASS GROUP
    McCall, Thomas M.
    Parry, Charles J.
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2005, 5 (01): : 173 - 195