On the rank of the 2-class group of some imaginary biquadratic number fields

被引:0
|
作者
A. Mouhib
S. Rouas
机构
[1] Université de Fez,Faculté Polydisciplinaire de Taza
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
2-group rank; 2-class group; imaginary biquadratic number field; Iwasawa module; 11R11; 11R16; 11R18; 11R27; 11R29;
D O I
暂无
中图分类号
学科分类号
摘要
For an imaginary biquadratic number field L=Q(i,d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L = \mathbb{Q}(i,\sqrt{d})$$\end{document}, where d is an odd square-free integer, let L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty$$\end{document} be the cyclotomic Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}_2$$\end{document}-extension of L. For any integer n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \geq 0$$\end{document}, we denote by Ln the nth layer of L∞/L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\infty}/L$$\end{document}. We study the rank of the 2-primary part of the class group of Ln and then we draw the list of all number fields L where the Galois group of the maximal unramified pro-2-extension of L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\infty$$\end{document} is metacyclic.
引用
收藏
页码:295 / 308
页数:13
相关论文
共 50 条