Hilbert genus fields of biquadratic fields

被引:0
|
作者
Yi Ouyang
Zhe Zhang
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
来源
Science China Mathematics | 2014年 / 57卷
关键词
class group; Hilbert symbol; Hilbert genus field; 11R65; 11R37;
D O I
暂无
中图分类号
学科分类号
摘要
The Hilbert genus field of the real biquadratic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document} is described by Yue (2010) and Bae and Yue (2011) explicitly in the case δ = 2 or p with p ≡ 1 mod 4 a prime and d a squarefree positive integer. In this article, we describe explicitly the Hilbert genus field of the imaginary biquadratic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = \mathbb{Q}\left( {\sqrt \delta ,\sqrt d } \right)$$\end{document}, where δ = −1,−2 or −p with p ≡ 3mod 4 a prime and d any squarefree integer. This completes the explicit construction of the Hilbert genus field of any biquadratic field which contains an imaginary quadratic subfield of odd class number.
引用
收藏
页码:2111 / 2122
页数:11
相关论文
共 50 条
  • [11] Genus fields of real biquadratic fields
    Yue, Qin
    RAMANUJAN JOURNAL, 2010, 21 (01): : 17 - 25
  • [12] On Hilbert genus fields of imaginary cyclic quartic fields
    Hajjami, Moulay Ahmed
    Chems-Eddin, Mohamed Mahmoud
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1689 - 1704
  • [13] Hilbert Genus Fields of Some Number Fields with High Degrees
    Chems-Eddin, Mohamed Mahmoud
    Hajjami, Moulay Ahmed
    Taous, Mohammed
    ACTA MATHEMATICA VIETNAMICA, 2023, 48 (02) : 359 - 369
  • [14] Hilbert Genus Fields of Some Number Fields with High Degrees
    Mohamed Mahmoud Chems-Eddin
    Moulay Ahmed Hajjami
    Mohammed Taous
    Acta Mathematica Vietnamica, 2023, 48 : 359 - 369
  • [15] THE CONSTRUCTION OF THE HILBERT GENUS FIELDS OF REAL CYCLIC QUARTIC FIELDS
    Chems-Eddin, Mohamed Mahmoud
    Hajjami, Moulay Ahmed
    Taous, Mohammed
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2022, 67 (02) : 235 - 257
  • [16] On Dirichlet biquadratic fields
    Fouvry, Etienne
    Koymans, Peter
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (03): : 637 - 646
  • [18] INTEGERS OF BIQUADRATIC FIELDS
    WILLIAMS, KS
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (04): : 519 - &
  • [19] MONOGENIC BIQUADRATIC FIELDS
    GRAS, MN
    TANOE, F
    MANUSCRIPTA MATHEMATICA, 1995, 86 (01) : 63 - 79
  • [20] Construction of the 2-Hilbert class field tower of certain biquadratic fields
    Azizi, A
    PACIFIC JOURNAL OF MATHEMATICS, 2003, 208 (01) : 1 - 10