On Dirichlet biquadratic fields

被引:0
|
作者
Fouvry, Etienne [1 ]
Koymans, Peter [2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
来源
关键词
NUMBER; HEURISTICS;
D O I
10.5802/jtnb.1220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a subset, with positive natural density, of squarefree integers n > 0such that the4-rank of the ideal class group of Q(root-n, root n)is omega(3)(n)-1, where omega(3)(n)is the number of prime divisors of n that are3modulo4. Recall that for the class groups associated to Q(root n) or Q(root-n)an analogous subset of n does not exist
引用
收藏
页码:637 / 646
页数:11
相关论文
共 50 条
  • [1] ON THE 4-RANK OF CLASS GROUPS OF DIRICHLET BIQUADRATIC FIELDS
    Fouvry, Etienne
    Koymans, Peter
    Pagano, Carlo
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2022, 21 (05) : 1543 - 1570
  • [2] GAUSS, DIRICHLET, AND THE LAW OF BIQUADRATIC RECIPROCITY
    ROWE, DE
    MATHEMATICAL INTELLIGENCER, 1988, 10 (02): : 13 - 25
  • [3] INTEGERS OF BIQUADRATIC FIELDS
    WILLIAMS, KS
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (04): : 519 - &
  • [4] MONOGENIC BIQUADRATIC FIELDS
    GRAS, MN
    TANOE, F
    MANUSCRIPTA MATHEMATICA, 1995, 86 (01) : 63 - 79
  • [5] Genus fields of real biquadratic fields
    Qin Yue
    The Ramanujan Journal, 2010, 21 : 17 - 25
  • [6] Hilbert genus fields of biquadratic fields
    OUYANG Yi
    ZHANG Zhe
    Science China(Mathematics), 2014, 57 (10) : 2111 - 2122
  • [7] Hilbert genus fields of biquadratic fields
    Yi Ouyang
    Zhe Zhang
    Science China Mathematics, 2014, 57 : 2111 - 2122
  • [8] Hilbert genus fields of biquadratic fields
    Ouyang Yi
    Zhang Zhe
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2111 - 2122
  • [9] Genus fields of real biquadratic fields
    Yue, Qin
    RAMANUJAN JOURNAL, 2010, 21 (01): : 17 - 25
  • [10] Hilbert Genus Fields of Imaginary Biquadratic Fields
    Zhe Zhang
    Qin Yue
    Communications in Mathematics and Statistics, 2017, 5 : 175 - 197