On Dirichlet biquadratic fields

被引:0
|
作者
Fouvry, Etienne [1 ]
Koymans, Peter [2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
来源
关键词
NUMBER; HEURISTICS;
D O I
10.5802/jtnb.1220
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a subset, with positive natural density, of squarefree integers n > 0such that the4-rank of the ideal class group of Q(root-n, root n)is omega(3)(n)-1, where omega(3)(n)is the number of prime divisors of n that are3modulo4. Recall that for the class groups associated to Q(root n) or Q(root-n)an analogous subset of n does not exist
引用
收藏
页码:637 / 646
页数:11
相关论文
共 50 条
  • [41] ON BIQUADRATIC FIELDS THAT ADMIT UNIT POWER INTEGRAL BASIS
    Pethoe, A.
    Ziegler, V.
    ACTA MATHEMATICA HUNGARICA, 2011, 133 (03) : 221 - 241
  • [42] Dirichlet series in function fields
    Sinnott, W.
    JOURNAL OF NUMBER THEORY, 2008, 128 (07) : 1893 - 1899
  • [43] On the unit index of some real biquadratic number fields
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Taous, Mohammed
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (02) : 703 - 715
  • [44] Imaginary bicyclic biquadratic function fields in characteristic two
    Aubry, Y
    Le Brigand, D
    JOURNAL OF NUMBER THEORY, 1999, 77 (01) : 36 - 50
  • [45] Polya groups of the imaginary bicyclic biquadratic number fields
    Taous, Mohammed
    Zekhnini, Abdelkader
    JOURNAL OF NUMBER THEORY, 2017, 177 : 307 - 327
  • [46] ON THE STRONGLY AMBIGUOUS CLASSES OF SOME BIQUADRATIC NUMBER FIELDS
    Azizi, Abdelmalek
    Zekhnini, Abdelkader
    Taous, Mohammed
    MATHEMATICA BOHEMICA, 2016, 141 (03): : 363 - 384
  • [47] On biquadratic fields that admit unit power integral basis
    Attila Pethő
    Volker Ziegler
    Acta Mathematica Hungarica, 2011, 133 : 221 - 241
  • [48] There are no universal ternary quadratic forms over biquadratic fields
    Krasensky, Jakub
    Tinkova, Magdalena
    Zemkova, Kristyna
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (03) : 861 - 912
  • [49] On congruence relations between the fundamental units of biquadratic fields
    Kim, Sey
    JOURNAL OF NUMBER THEORY, 2006, 121 (01) : 7 - 29
  • [50] ON THE RESOLUTION OF INDEX FORM EQUATIONS IN BIQUADRATIC NUMBER-FIELDS .3. THE BICYCLIC BIQUADRATIC CASE
    GAAL, I
    PETHO, A
    POHST, M
    JOURNAL OF NUMBER THEORY, 1995, 53 (01) : 100 - 114