Riemannian optimization for phase retrieval from masked Fourier measurements

被引:0
|
作者
Huiping Li
Song Li
机构
[1] Zhejiang University,School of Mathematical Sciences
[2] Hangzhou Normal University,Department of Mathematics
来源
关键词
Phase retrieval; Riemannian optimization; Gradient descent algorithm; Conjugate gradient descent algorithm; Masked Fourier measurements; 15A29; 94A12; 94A20; 78A45; 41A29; 53B21; 90C26; 68Q25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the noisy phase retrieval problem under the measurements of Fourier transforms with complex random masks. Here two kinds of Riemannian optimization algorithms, namely, Riemannian gradient descent algorithm (RGrad) and Riemannian conjugate gradient descent algorithm (RCG), are presented to solve such problem from these special but widely used measurements in practical applications. Since the masked Fourier measurements are less random, we establish stable guarantees for signals by the truncated variants of RGrad and RCG, respectively. First of all, a good initialization is constructed by means of a truncated spectral method. Then we prove that a signal x∈ℂn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {x}\in \mathbb {C}^{n}$\end{document} can be recovered robustly to bounded noise through these two algorithms, provided that L=O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L= O(\log n)$\end{document} complex random masks are performed in the measurement process. This implies that the sample complexity is optimal up to a log factor, namely, O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(n\log n)$\end{document}. Particularly, each sequence generated by the truncated RGrad and RCG provably converges to the true solution at a geometric rate in the noiseless case. Finally, several empirical experiments are provided to show the effectiveness and stability of such two kinds of algorithms compared with Wirtinger Flow(WF) algorithm, for which provable guarantee has been set up for signals under masked Fourier measurements, provided that L=O(log4n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L= O(\log ^{4}n)$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects
    Miao, J
    Sayre, D
    Chapman, HN
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (06): : 1662 - 1669
  • [32] Phase retrieval from the spectral interferograms by windowed Fourier transform
    Hlubina, P.
    Lunacek, J.
    Ciprian, D.
    Chlebus, R.
    Lunackova, M.
    OPTICAL MICRO- AND NANOMETROLOGY IN MICROSYSTEMS TECHNOLOGY II, 2008, 6995
  • [33] Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects
    Miao, J.
    Sayre, D.
    Chapman, H.N.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1998, 15 (06): : 1662 - 1669
  • [34] Fourier Phase Retrieval: Uniqueness and Algorithms
    Bendory, Tamir
    Beinert, Robert
    Eldar, Yonina C.
    COMPRESSED SENSING AND ITS APPLICATIONS, 2017, : 55 - 91
  • [35] THE STATUS OF PRACTICAL FOURIER PHASE RETRIEVAL
    BATES, RHT
    MNYAMA, D
    ADVANCES IN ELECTRONICS AND ELECTRON PHYSICS, 1986, 67 : 1 - 64
  • [36] WAVEFRONT PHASE ESTIMATION FROM FOURIER INTENSITY MEASUREMENTS
    CEDERQUIST, JN
    FIENUP, JR
    WACKERMAN, CC
    ROBINSON, SR
    KRYSKOWSKI, D
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1989, 6 (07): : 1020 - 1026
  • [37] Phase retrieval from the magnitudes of affine linear measurements
    Gao, Bing
    Sun, Qiyu
    Wang, Yang
    Xu, Zhiqiang
    ADVANCES IN APPLIED MATHEMATICS, 2018, 93 : 121 - 141
  • [38] Injectivity of Gabor phase retrieval from lattice measurements
    Grohs, Philipp
    Liehr, Lukas
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2023, 62 : 173 - 193
  • [39] Phase Retrieval from Local Measurements in Two Dimensions
    Iwen, Mark
    Preskitt, Brian
    Saab, Rayan
    Viswanathan, Aditya
    WAVELETS AND SPARSITY XVII, 2017, 10394
  • [40] ROLE OF DIFFRACTION IN PHASE RETRIEVAL FROM INTENSITY MEASUREMENTS
    FOLEY, JT
    ABDULJALIL, MA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1981, 71 (12) : 1560 - 1560