Injectivity of Gabor phase retrieval from lattice measurements

被引:14
|
作者
Grohs, Philipp [1 ,2 ,3 ]
Liehr, Lukas [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Austrian Acad Sci, Johann Radon Inst Appl & Computat Math, Altenbergstr 69, A-4040 Linz, Austria
[3] Univ Vienna, Res Network DataSci UniVie, Kolingasse 14-16, A-1090 Vienna, Austria
关键词
Phase retrieval; Spectrogram sampling; Gabor transform; Shift -invariant spaces; Lattice measurements; UNIQUENESS; RECONSTRUCTION; TRANSFORM;
D O I
10.1016/j.acha.2022.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish novel uniqueness results for the Gabor phase retrieval problem: if c : L2 (R) -+ L2(R2) denotes the Gabor transform then every f E L4[- 2c, c2 ] is determined up to a global phase by the values |c f (x, omega)| where (x, omega) are points on the lattice b-1Z x (2c)-1Z and b > 0 is an arbitrary positive constant. This for the first time shows that compactly-supported, complex-valued functions can be uniquely reconstructed from lattice samples of their spectrogram. Moreover, by making use of recent developments related to sampling in shift-invariant spaces by Grochenig, Romero and Stockler, we prove analogous uniqueness results for functions in shift-invariant spaces with Gaussian generator. Generalizations to nonuniform sampling are also presented. Finally, we compare our results to the situation where the considered signals are assumed to be real-valued. (c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:173 / 193
页数:21
相关论文
共 50 条
  • [1] Phase Retrieval from Gabor Measurements
    Bojarovska, Irena
    Flinth, Axel
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (03) : 542 - 567
  • [2] Phase Retrieval from Gabor Measurements
    Irena Bojarovska
    Axel Flinth
    Journal of Fourier Analysis and Applications, 2016, 22 : 542 - 567
  • [3] Injectivity of sampled Gabor phase retrieval in spaces with general integrability conditions
    Wellershoff, Matthias
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
  • [4] Stability Estimates for Phase Retrieval from Discrete Gabor Measurements
    Rima Alaifari
    Matthias Wellershoff
    Journal of Fourier Analysis and Applications, 2021, 27
  • [5] Stability Estimates for Phase Retrieval from Discrete Gabor Measurements
    Alaifari, Rima
    Wellershoff, Matthias
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (02)
  • [6] Stability estimates for phase retrieval from discrete linear canonical Gabor transformation measurements
    Zhong, Shi
    Liu, Bei
    Li, Rui
    Zhang, Qingyue
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3937 - 3947
  • [7] Saving phase: Injectivity and stability for phase retrieval
    Bandeira, Afonso S.
    Cahill, Jameson
    Mixon, Dustin G.
    Nelson, Aaron A.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (01) : 106 - 125
  • [8] An algebraic characterization of injectivity in phase retrieval
    Conca, Aldo
    Edidin, Dan
    Hering, Milena
    Vinzant, Cynthia
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 38 (02) : 346 - 356
  • [9] Phase Retrieval from Sampled Gabor Transform Magnitudes: Counterexamples
    Alaifari, Rima
    Wellershoff, Matthias
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 28 (01)
  • [10] Phase Retrieval from Sampled Gabor Transform Magnitudes: Counterexamples
    Rima Alaifari
    Matthias Wellershoff
    Journal of Fourier Analysis and Applications, 2022, 28